某小區想利用一矩形空地建市民健身廣場,設計時決定保留空地邊上的一水塘(如圖中陰影部分),水塘可近似看作一個等腰直角三角形,其中
,
,且
中,
,經測量得到
.為保證安全同時考慮美觀,健身廣場周圍準備加設一個保護欄.設計時經過點
作一直線交
于
,從而得到五邊形
的市民健身廣場,設
.
(1)將五邊形的面積
表示為
的函數;
(2)當為何值時,市民健身廣場的面積最大?并求出最大面積.
科目:高中數學 來源: 題型:解答題
(滿分16分)已知函數,其中
是自然對數的底數.
(1)證明:是
上的偶函數;
(2)若關于的不等式
在
上恒成立,求實數
的取值范圍;
(3)已知正數滿足:存在
,使得
成立,試比較
與
的大小,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設函數f(x)=,g(x)=f(x)-ax,x∈[1,3],其中a∈R,記函數g(x)的最大值與最小值的差為h(a).
(1)求函數h(a)的解析式;
(2)畫出函數y=h(x)的圖象并指出h(x)的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知f(x)=(x≠a).
(1)若a=-2,試證明f(x)在(-∞,-2)內單調遞增;
(2)若a>0且f(x)在(1,+∞)內單調遞減,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(13分)(2011•湖北)設函數f(x)=x3+2ax2+bx+a,g(x)=x2﹣3x+2,其中x∈R,a、b為常數,已知曲線y=f(x)與y=g(x)在點(2,0)處有相同的切線l.
(Ⅰ) 求a、b的值,并寫出切線l的方程;
(Ⅱ)若方程f(x)+g(x)=mx有三個互不相同的實根0、x1、x2,其中x1<x2,且對任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立,求實數m的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com