設函數f(x)=,g(x)=f(x)-ax,x∈[1,3],其中a∈R,記函數g(x)的最大值與最小值的差為h(a).
(1)求函數h(a)的解析式;
(2)畫出函數y=h(x)的圖象并指出h(x)的最小值.
科目:高中數學 來源: 題型:解答題
已知函數f(x)對任意實數x,y恒有f(x+y)=f(x)+f(y),且當x>0時,f(x)<0,又f(1)=-2.
(1)判斷f(x)的奇偶性;
(2)求證:f(x)是R上的減函數;
(3)求f(x)在區間[-3,3]上的值域;
(4)若?x∈R,不等式f(ax2)-2f(x)<f(x)+4恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某小區想利用一矩形空地建市民健身廣場,設計時決定保留空地邊上的一水塘(如圖中陰影部分),水塘可近似看作一個等腰直角三角形,其中
,
,且
中,
,經測量得到
.為保證安全同時考慮美觀,健身廣場周圍準備加設一個保護欄.設計時經過點
作一直線交
于
,從而得到五邊形
的市民健身廣場,設
.
(1)將五邊形的面積
表示為
的函數;
(2)當為何值時,市民健身廣場的面積最大?并求出最大面積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設f(x)是(-∞,+∞)上的奇函數,f(x+2)=-f(x),當0≤x≤1時,f(x)=x.
(1)求f(π)的值;
(2)當-4≤x≤4時,求f(x)的圖象與x軸所圍圖形的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,把邊長為10的正六邊形紙板剪去相同的六個角,做成一個底面為正六邊形的無蓋六棱柱盒子,設其高為h,體積為V(不計接縫).
(1)求出體積V與高h的函數關系式并指出其定義域;
(2)問當為多少時,體積V最大?最大值是多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com