精英家教網 > 高中數學 > 題目詳情

【題目】某班有兩個課外活動小組,其中第一小組有足球票6張,排球票4張;第二個小組有

足球票4張,排球票6張.甲從第一小組的10張票中任抽1張,乙從第二小組的10

張票中任抽1張.

(1)兩人都抽到足球票的概率是多少?

(2)兩人中至少有一人抽到足球票的概率是多少?

【答案】() 兩人都抽到足球票的概率是

()兩人中至少有1人抽到足球票的概率是

【解析】記甲從第一小組的10張票中任抽1張,抽到足球票為事件A,乙從第二小組的10張票中任抽1張,抽到足球票為事件B,則甲從第一小組的10張票中任抽1張,抽到排球票為事件乙從第二小組的10張票中任抽1張,抽到排球票為事件,

2

于是, ,

由于甲(或乙)是否抽到足球票,對乙(或甲)是否抽到足球票沒有影響,因此AB是相互獨立事件. 6

)甲、乙兩人都抽到足球票就是事件A·B發生,根據相互獨立事件的概率乘法公式,得到

PA·B)=PA·PB)=

答:兩人都抽到足球票的概率是9

)甲、乙兩人均未抽到足球票(事件·發生)的概率為:

P·)=P·P)=

兩人中至少有1人抽到足球票的概率為:

P1P·)=111

答:兩人中至少有1人抽到足球票的概率是12

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數.

(Ⅰ)若函數有極值,求實數的取值范圍;

(Ⅱ)當有兩個極值點(記為)時,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某居民小區要建造一座八邊形的休閑小區,它的主體造型的平面圖是由兩個相同的矩形ABCD和EFGH構成的,是面積為200平方米的十字形地帶.計劃在正方MNPQ上建一座花壇,造價是每平方米4 200元,在四個相同的矩形(圖中陰影部分)上鋪上花崗巖地坪,造價是每平方米210元,再在四個空角上鋪上草坪,造價是每平方米80元.

(1)設總造價是S元,AD長為x米,試建立S關于x的函數關系式;

(2)當x為何值時,S最?并求出最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為調查某地區老年人是否需要志愿者提供幫助,用簡單隨機抽樣方法從該地

區調查了500位老年人,結果如下:

需要

40

30

不需要

160

270

(1)估計該地區老年人中,需要志愿者提供幫助的老年人的比例;

(2)能否在犯錯誤的概率不超過0.01的前提下認為該地區的老年人需要志愿者提供幫助與性別有

關?

附:

P(K2k)

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某工廠在甲、乙兩地的兩個分廠各生產某種機器12臺和6. 現銷售給A10,B8. 已知從甲地調運1臺至A地、B地的運費分別為400元和800,從乙地調運1臺至A地、B地的費用分別為300元和500元.

(1)設從甲地調運x臺至A,求總費用y關于臺數x的函數解析式;

(2)若總運費不超過9 000,問共有幾種調運方案;

(3)求出總運費最低的調運方案及最低的費用.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)是正比例函數,函數g(x)是反比例函數,f(1)=1,g(1)=2.

(1)求函數f(x)g(x);

(2)判斷函數f(x)+g(x)的奇偶性;

(3)求函數f(x)+g(x)(0,]上的最小值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數的定義域為,對于任意的都有時, .

1)求

2)證明:對于任意的, ;

3)當時,若不等式上恒定成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】

(1)討論函數的極值;

(2)當時, ,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ax2-2ax+2+b(a≠0)在區間[2,3]上有最大值5,最小值2.

(1)求a,b的值;

(2)若b<1,g(x)=f(x)-2mx在[2,4]上單調,求m的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视