【題目】一只藥用昆蟲的產卵數y與一定范圍內的溫度x有關,現收集了該種藥用昆蟲的6組觀測數據如下表:
溫度x/℃ | 21 | 23 | 24 | 27 | 29 | 32 |
產卵數y/個 | 6 | 11 | 20 | 27 | 57 | 77 |
經計算得:
,
,
線性回歸模型的殘差平方和
,
,
其中分別為觀測數據中的溫度和產卵數,
(1)若用線性回歸模型,求y關于x的回歸方程(精確到0.1);
(2)若用非線性回歸模型求得y關于x的回歸方程為,且相關指數
.
①試與1中的回歸模型相比,用說明哪種模型的擬合效果更好.
②用擬合效果好的模型預測溫度為35℃時該用哪種藥用昆蟲的產卵數(結果取整數)
附:一組數據其回歸直線
的斜率和截距的最小二乘估計為
,
;相關指數
.
科目:高中數學 來源: 題型:
【題目】已知等比數列{an}的各項均為正數,2a2﹣5a1=3,a3a7=9a42;
(1)求數列{an}的通項公式;
(2)設bn=anlog3an,求數列{bn}的前n項和Sn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
且
.
(1)若函數在
上恒有意義,求
的取值范圍;
(2)是否存在實數,使函數
在區間
上為增函數,且最大值為
?若存在求出
的值,若不存在請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下圖為某倉庫一側墻面的示意圖,其下部是矩形ABCD,上部是圓弧AB,該圓弧所在的圓心為O,為了調節倉庫內的濕度和溫度,現要在墻面上開一個矩形的通風窗EFGH(其中E,F在圓弧AB上,G,H在弦AB上).過O作,交AB 于M,交EF于N,交圓弧AB于P,已知
(單位:m),記通風窗EFGH的面積為S(單位:
)
(1)按下列要求建立函數關系式:
(i)設,將S表示成
的函數;
(ii)設,將S表示成
的函數;
(2)試問通風窗的高度MN為多少時,通風窗EFGH的面積S最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
且
.
(1)若函數在
上恒有意義,求
的取值范圍;
(2)是否存在實數,使函數
在區間
上為增函數,且最大值為
?若存在求出
的值,若不存在請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示的“8”字形曲線是由兩個關于x軸對稱的半圓和一個雙曲線的一部分組成的圖形,其中上半個圓所在圓方程是x2+y2﹣4y﹣4=0,雙曲線的左、右頂點A、B是該圓與x軸的交點,雙曲線與半圓相交于與x軸平行的直徑的兩端點.
(1)試求雙曲線的標準方程;
(2)記雙曲線的左、右焦點為F1、F2,試在“8”字形曲線上求點P,使得∠F1PF2是直角.
(3)過點A作直線l分別交“8”字形曲線中上、下兩個半圓于點M、N,求|MN|的最大長度.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,AM⊥平面A1BD,垂足為M,以下四個結論中正確的個數為( 。
①AM垂直于平面CB1D1;
②直線AM與BB1所成的角為45°;
③AM的延長線過點C1;
④直線AM與平面A1B1C1D1所成的角為60°
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com