【題目】已知函數,
且
.
(1)若函數在
上恒有意義,求
的取值范圍;
(2)是否存在實數,使函數
在區間
上為增函數,且最大值為
?若存在求出
的值,若不存在請說明理由.
【答案】(1);(2)
.
【解析】
(1)根據在
上恒有意義,則
在
上恒成立.討論對稱軸的位置,即可求得
的取值范圍.
(2)討論與
兩種情況,結合復函函數單調性即可判斷是否符合單調遞增.再根據最大值為
,代入
的值,解方程即可求解.
(1)函數在
上恒有意義
即在
上恒成立
令
對稱軸為,開口向上
當時,只需
,即
,解得
,所以
當時,只需
,即
,解得
,所以
當時, 只需
,即
,解得
,所以
綜上可知, 的取值范圍為
(2)函數對稱軸為
由復合函數單調性的性質可知:
當時
為單調遞減函數,
在
上為單調遞增函數,所以
在
上單調遞減,不合題意
當時,
為單調遞增函數, 若
在
上單調遞增,則
在
上為單調遞增函數.
所以由對稱軸在左側可得
因為最大值為2,則
即
即,化簡可得
解得或
因為
所以
當函數
在區間
上為增函數,且最大值為
科目:高中數學 來源: 題型:
【題目】已知經銷某種商品的電商在任何一個銷售季度內,每售出噸該商品可獲利潤
萬元,未售出的商品,每
噸虧損
萬元.根據往年的銷售經驗,得到一個銷售季度內市場需求量的頻率分布直方圖如右圖所示.已知電商為下一個銷售季度籌備了
噸該商品.現以
(單位:噸,
)表示下一個銷售季度的市場需求量,
(單位:萬元)表示該電商下一個銷售季度內經銷該商品獲得的利潤.
(Ⅰ)根據頻率分布直方圖,估計一個銷售季度內市場需求量的平均數與中位數的大。
(Ⅱ)根據直方圖估計利潤不少于57萬元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《九章算術》卷五《商功》中有如下敘述“今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高一丈“芻甍”指的是底面為矩形的對稱型屋脊狀的幾何體,“下廣三丈”是指底面矩形寬三丈,“袤四丈”是指底面矩形長四丈,“上袤二丈”是指脊長二丈,“無寬”是指脊無寬度,“高一丈”是指幾何體的高為一丈.現有一個芻甍如圖所示,下廣三丈,袤四丈,上袤三丈,無廣,高二丈,則該芻甍的外接球的表面積為_______________平方丈.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一只藥用昆蟲的產卵數y與一定范圍內的溫度x有關,現收集了該種藥用昆蟲的6組觀測數據如下表:
溫度x/℃ | 21 | 23 | 24 | 27 | 29 | 32 |
產卵數y/個 | 6 | 11 | 20 | 27 | 57 | 77 |
經計算得:
,
,
線性回歸模型的殘差平方和
,
,
其中分別為觀測數據中的溫度和產卵數,
(1)若用線性回歸模型,求y關于x的回歸方程(精確到0.1);
(2)若用非線性回歸模型求得y關于x的回歸方程為,且相關指數
.
①試與1中的回歸模型相比,用說明哪種模型的擬合效果更好.
②用擬合效果好的模型預測溫度為35℃時該用哪種藥用昆蟲的產卵數(結果取整數)
附:一組數據其回歸直線
的斜率和截距的最小二乘估計為
,
;相關指數
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】交通指數是指交通擁堵指數的簡稱,是綜合反映道路網暢通或擁堵的概念性指數值,記交通指數為,其范圍為
,分別有五個級別:
,暢通;
,基本暢通;
,輕度擁堵;
,中度擁堵;
,嚴重擁堵.在晚高峰時段(
),從某市交通指揮中心選取了市區20個交通路段,依據其交通指數數據繪制的頻率分布直方圖如圖所示.
(1)求出輕度擁堵、中度擁堵、嚴重擁堵的路段的個數;
(2)用分層抽樣的方法從輕度擁堵、中度擁堵、嚴重擁堵的路段中共抽取6個路段,求依次抽取的三個級別路段的個數;
(3)從(2)中抽取的6個路段中任取2個,求至少有1個路段為輕度擁堵的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,
、
分別為橢圓
的左、右焦點.設不經過焦點
的直線
與橢圓交于兩個不同的點
、
,焦點
到直線
的距離為
.若直線
、
、
的斜率依次成等差數列,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com