【題目】以平面直角坐標系原點O為極點,以x軸非負半軸為極軸,以平面直角坐標系的長度單位為長度單位建立極坐標系.已知直線l的參數方程為 (t為參數),曲線C的極坐標方程為ρsin2θ=4cosθ
(Ⅰ) 求曲線C的直角坐標方程;
(Ⅱ) 設直線l與曲線C相交于A,B兩點,求|AB|.
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和Sn=k3n﹣m,且a1=3,a3=27.
(I)求證:數列{an}是等比數列;
(II)若anbn=log3an+1 , 求數列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四面體ABCD中,AB、BC、BD兩兩垂直,AB=BC=BD=4,E、F分別為棱BC、AD的中點.
(1)求異面直線AB與EF所成角的余弦值;
(2)求E到平面ACD的距離;
(3)求EF與平面ACD所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a>0,函數f(x)= +|lnx﹣a|,x∈[1,e2].
(1)當a=3時,求曲線y=f(x)在點(3,f(3))處的切線方程;
(2)若f(x)≤ 恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知(1+3x)n的展開式中,末三項的二項式系數的和等于121,求:
(1) 展開式中二項式系數最大的項;
(2) 展開式中系數最大的項.(結果可以以組合數形式表示)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某競賽的題庫系統有60%的自然科學類題目,40%的文化生活類題目(假設題庫中的題目總數非常大),參賽者需從題庫中抽取3個題目作答,有兩種抽取方法:方法一是直接從題庫中隨機抽取3個題目;方法二是先在題庫中按照題目類型用分層抽樣的方法抽取10個題目作為樣本,再從這10個題目中任意抽取3個題目.
(1)兩種方法抽取的3個題目中,恰好有1個自然科學類題目和2個文化生活類題目的概率是否相同?若相同,說明理由;若不同,分別計算出兩種抽取方法對應的概率.
(2)已知某參賽者抽取的3個題目恰好有1個自然科學類題目和2個文化生活類題目,且該參賽者答對自然科學類題目的概率為,答對文化生活類題目的概率為
.設該參賽者答對的題目數為X,求X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】經過對K2的統計量的研究,得到了若干個觀測值,當K2≈6.706時,我們認為兩分類變量A、B( )
A. 有67.06%的把握認為A與B有關系 B. 有99%的把握認為A與B有關系
C. 有0.010的把握認為A與B有關系 D. 沒有充分理由說明A與B有關系
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某玩具生產公司每天計劃生產衛兵、騎兵、傘兵這三種玩具共個,生產一個衛兵需
分鐘,生產一個騎兵需
分鐘,生產一個傘兵需
分鐘,已知總生產時間不超過
小時,若生產一個衛兵可獲利潤
元,生產一個騎兵可獲利潤
元,生產一個傘兵可獲利潤
元.
(1)用每天生產的衛兵個數與騎兵個數
表示每天的利潤
(元);
(2)怎么分配生產任務才能使每天的利潤最大,最大利潤是多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com