【題目】動點與點
的距離和它到直線
的距離相等,記點
的軌跡為曲線
(1)求曲線的方程
(2)設點,動點
在曲線
上運動時,
的最短距離為
,求
的值以及取到最小值時點
的坐標
(3)設為曲線
的任意兩點,滿足
(
為原點),試問直線
是否恒過一個定點?如果是,求出定點坐標;如果不是,說明理由
【答案】(1);(2)
;
;(3)恒過定點
,理由見解析
【解析】
(1)由拋物線定義可知軌跡為拋物線,結合焦點坐標求得曲線方程;
(2)設,由兩點間距離公式可得到
,結合二次函數的性質可知當
時,
取得最小值,從而構造方程求得
;利用
求得
,從而得到
點坐標;
(3)將直線方程與拋物線方程聯立可得
坐標;由兩點連線斜率公式求得直線
斜率,進而得到直線
的方程,整理可得恒過的定點坐標.
(1)由拋物線定義可知,動點的軌跡是以
為焦點,
為準線的拋物線
曲線
的方程為:
(2)設
當
時,
,解得:
此時
(3)由題意知,直線斜率均存在且均不為零,可記為
,與拋物線方程聯立得:
同理可得:
直線
斜率為
直線
方程為:
整理可得:
當
,
時等式恒成立
直線
恒過點
科目:高中數學 來源: 題型:
【題目】(題文)(題文)已知橢圓的左右頂點分別為
,
,右焦點
的坐標為
,點
坐標為
,且直線
軸,過點
作直線與橢圓
交于
,
兩點(
,
在第一象限且點
在點
的上方),直線
與
交于點
,連接
.
(1)求橢圓的方程;
(2)設直線的斜率為
,直線
的斜率為
,問:
的斜率乘積是否為定值,若是求出該定值,若不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在中,已知
,M是BC的中點.
(1)若,求向量
與向量
的夾角的余弦值;
(2)若O是線段AM上任意一點,且,求
的最小值;
(3)若點P是邊BC上的一點,且,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程(本題滿分10分)
在平面直角坐標系中,將曲線向左平移2個單位,再將得到的曲線上的每一個點的橫坐標保持不變,縱坐標縮短為原來的
,得到曲線
,以坐標原點
為極點,
軸的正半軸為極軸,建立極坐標系,
的極坐標方程為
.
(1)求曲線的參數方程;
(2)已知點在第一象限,四邊形
是曲線
的內接矩形,求內接矩形
周長的最大值,并求周長最大時點
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在平面直角坐標系中,直線
(
為參數),以原點為極點,
軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線
的極坐標方程為
.
(1)求直線的普通方程及曲線
的直角坐標方程;
(2)設點直角坐標為
,直線
與曲線
交于
,
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左.右焦點分別為
,短軸兩個端點為
,且四邊形
的邊長為
的正方形.
(Ⅰ)求橢圓的方程;
(Ⅱ)若,分別是橢圓長軸的左,右端點,動點
滿足
,連結
,交橢圓于點
.證明:
的定值;
(Ⅲ)在(Ⅱ)的條件下,試問軸上是否存在異于點
,的定點
,使得以
為直徑的圓恒過直線
,
的交點,若存在,求出點
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(kx+)ex﹣2x,若f(x)<0的解集中有且只有一個正整數,則實數k的取值范圍為 ( 。
A. [ ,
)B. (
,
]
C. [)D. [
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正方體的棱長為1,線段
上有兩個動點
,且
,現有如下四個結論:
;
平面
;
三棱錐
的體積為定值;
異面直線
所成的角為定值,
其中正確結論的序號是______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中有如下正確結論:
為曲線
(
、
為非零實數,且不同時為負)上一點,則過點
的切線方程為
.
(1)已知為橢圓
上一點,
為過點
的橢圓的切線,若直線
與直線
的斜率分別為
與
,求證:
為定值;
(2)過橢圓上一點
引橢圓
的切線,與
軸交于點
.若
為正三角形,求橢圓
的方程;
(3)求與圓及(2)中的橢圓
均相切的直線
與坐標軸圍成的三角形的面積的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com