【題目】設xOy,為兩個平面直角坐標系,它們具有相同的原點,Ox正方向到
正方向的角度為θ,那么對于任意的點M,在xOy下的坐標為(x,y),那么它在
坐標系下的坐標(
,
)可以表示為:
=xcosθ+ysinθ,
=ycosθ-xsinθ.根據以上知識求得橢圓3
-
+
-1=0的離心率為
A. B.
C.
D.
科目:高中數學 來源: 題型:
【題目】定義在實數集上的函數f(x)=x2+ax(a為常數),g(x)= x3﹣bx+m(b為常數),若函數f(x)在x=1處的切線斜率為3,x=
是g(x)的一個極值點
(1)求a,b的值;
(2)若存在x∈[﹣4,4]使得f(x)≥g(x)成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設命題對任意實數
,不等式
恒成立;命題
方程
表示焦點在
軸上的雙曲線.
(1)若命題為真命題,求實數
的取值范圍;
(2)若命題:“”為真命題,且“
”為假命題,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數列{an}是以d(d≠0)為公差的等差數列,a1=2,且a2 , a4 , a8成等比數列.
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)若bn=an2n(n∈N*),求數列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等比數列{}的前n項和為
,且滿足2
=
+m(m∈R).
(Ⅰ)求數列{}的通項公式;
(Ⅱ)若數列{}滿足
,求數列{
}的前n項和
.
【答案】(Ⅰ)(Ⅱ)
【解析】
(Ⅰ)法一:由前n項和與數列通項公式的關系可得數列的通項公式為;
法二:由題意可得,則
,據此可得數列的通項公式為
.
(Ⅱ)由(Ⅰ)可得,裂項求和可得
.
(Ⅰ)法一:
由得
,
當時,
,即
,
又,當
時符合上式,所以通項公式為
.
法二:
由得
從而有,
所以等比數列公比,首項
,因此通項公式為
.
(Ⅱ)由(Ⅰ)可得,
,
.
【點睛】
本題主要考查數列前n項和與通項公式的關系,裂項求和的方法等知識,意在考查學生的轉化能力和計算求解能力.
【題型】解答題
【結束】
18
【題目】四棱錐S-ABCD的底面ABCD為直角梯形,AB∥CD,AB⊥BC,AB=2BC=2CD=2,△SAD為正三角形.
(Ⅰ)點M為棱AB上一點,若BC∥平面SDM,AM=λAB,求實數λ的值;
(Ⅱ)若BC⊥SD,求二面角A-SB-C的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
,在
處的切線方程為
.
(1)求,
;
(2)若,證明:
.
【答案】(1),
;(2)見解析
【解析】試題分析:(1)求出函數的導數,得到關于 的方程組,解出即可;
(2)由(1)可知,
,
由,可得
,令
, 利用導數研究其單調性可得
,
從而證明.
試題解析:((1)由題意,所以
,
又,所以
,
若,則
,與
矛盾,故
,
.
(2)由(1)可知,
,
由,可得
,
令,
,
令
當時,
,
單調遞減,且
;
當時,
,
單調遞增;且
,
所以在
上當單調遞減,在
上單調遞增,且
,
故,
故.
【點睛】本題考查利用函數的切線求參數的方法,以及利用導數證明不等式的方法,解題時要認真審題,注意導數性質的合理運用.
【題型】解答題
【結束】
22
【題目】在平面直角坐標系中,曲線
的參數方程為
(
,
為參數),以坐標原點
為極點,
軸正半軸為極軸建立極坐標系,直線
的極坐標方程為
,若直線
與曲線
相切;
(1)求曲線的極坐標方程;
(2)在曲線上取兩點
,
與原點
構成
,且滿足
,求面積
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一同學在電腦中打出若干個圈:○●○○●○○○●○○○○●○○○○○●…若將此若干個圈依此規律繼續下去,得到一系列的圈,那么在前2012個圈中的●的個數是 ( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】通過隨機詢問110名性別不同的大學生是否愛好某項運動,得到如下的列聯表:
由 列聯表算得參照附表,得到的正確結論是( ).
A. 在犯錯誤的概率不超過0.01的前提下認為“愛好該項運動與性別有關”
B. 在犯錯誤的概率不超過0.01的前提下認為“愛好該項運動與性別無關”
C. 在犯錯誤的概率不超過0.001的前提下,認為“愛好該項運動與性別有關”
D. 在犯錯誤的概率不超過0.001的前提下,認為“愛好該項運動與性別無關”
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com