【題目】(本小題滿分13分)甲、乙兩位學生參加數學競賽培訓,現分別從他們在培訓期間參加的若干次預賽成績中隨機抽取8次,記錄如下:
甲:82 81 79 78 95 88 93 84
乙:92 95 80 75 83 80 90 85
(1)用莖葉圖表示這兩組數據;
(2)現要從中選派一人參加數學競賽,從統計學的角度(在平均數、方差或標準差中選兩個)考慮,你認為選派哪位學生參加合適?請說明理由.
【答案】(1)見解析;(2)甲.
【解析】
試題
(1)根據所給的兩組數據,用十位做莖,個位做葉,寫出莖葉圖,根據乙組數據有8個數字,這組數據的中位數是最中間兩個數的平均數,乙組數據的中位數為85.
(2)根據所給的兩組數據,分別求出兩組數據的平均數,再求出兩組數據的方差,比較所得的兩組結果,甲和乙的平均數相同,甲的方差較小,成績比較穩定.
試題解析: (1)作出莖葉圖如下:
(2)由題意可得:
=
(78+79+81+82+84+88+93+95)=85,
=
(75+80+80+83+85+90+92+95)=85.
所以=
[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5,
=
[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41.
∵=
,
<
∴甲的成績較穩定,派甲參賽比較合適.
科目:高中數學 來源: 題型:
【題目】已知橢圓C中心在原點,焦點在x軸上,左右焦點分別為F1,F2,且|F1F2|=2,點(1,)在橢圓C上.
(1)求橢圓C的方程;
(2)過F1的直線l與橢圓C相交于A,B兩點,且△AF2B的面積為,求以F2為圓心且與直線l相切的圓的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓+
=1(a>b>0)上的點P到左,右兩焦點F1,F2的距離之和為2
,離心率為
.
(1)求橢圓的標準方程;
(2)過右焦點F2的直線l交橢圓于A,B兩點,若y軸上一點M(0,)滿足|MA|=|MB|,求直線l的斜率k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠擬用集裝箱托運甲、乙兩種貨物,集裝箱的體積、重量、可獲利潤和托運能力等限制數據列在表中,如何設計甲、乙兩種貨物應各托運的箱數可以獲得最大利潤,最大利潤是多少?
貨物 | 體積 | 重量 | 利潤 |
甲 | 5 | 2 | 20 |
乙 | 4 | 5 | 10 |
托運限制 | 24 | 13 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓
:
的離心率
,左頂點為
,過點
作斜率為
的直線
交橢圓
于點
,交
軸于點
.
(1)求橢圓的方程;
(2)已知為
的中點,是否存在定點
,對于任意的
都有
,若存在,求出點
的
坐標;若不存在說明理由;
(3)若過點作直線
的平行線交橢圓
于點
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,從參加環保知識競賽的學生中抽出名,將其成績(均為整數)整理后畫出的頻率分布直方圖如下:觀察圖形,回答下列問題:
(1)這一組的頻數、頻率分別是多少?
(2)估計這次環保知識競賽成績的平均數、眾數、中位數。(不要求寫過程)
(3) 從成績是80分以上(包括80分)的學生中選兩人,求他們在同一分數段的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某儀器經過檢驗合格才能出廠,初檢合格率為:若初檢不合格,則需要進行調試,經調試后再次對其進行檢驗;若仍不合格,作為廢品處理,再檢合格率為
.每臺儀器各項費用如表:
項目 | 生產成本 | 檢驗費/次 | 調試費 | 出廠價 |
金額(元) | 1000 | 100 | 200 | 3000 |
(Ⅰ)求每臺儀器能出廠的概率;
(Ⅱ)求生產一臺儀器所獲得的利潤為1600元的概率(注:利潤出廠價
生產成本
檢驗費
調試費);
(Ⅲ)假設每臺儀器是否合格相互獨立,記為生產兩臺儀器所獲得的利潤,求
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.我國PM2.5標準采用世衛組織設定的最寬限值,即PM2.5日均在35微克/立方米以下空氣質量為一級,在35微克/立方米75微克/立方米之間空氣質量為二級,在75微克/立方米以上空氣質量為超標.北方某市環保局從2015年全年每天的PM2.5監測數據中隨機抽取15天的數據作為樣本,監測值如下圖所示(十位為莖,個位為葉).
(1)15天的數據中任取3天的數據,記表示其中空氣質量達到一級的天數,求
的分布列;
(2)以這15天的PM2.5日均值來估計一年的空氣質量情況,則一年(按360天計算)中大約有多少天的空氣質量達到一級.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線的焦點是橢圓
的頂點,
為橢圓
的左焦點且橢圓
經過點
.
(1)求橢圓的方程;
(2)過橢圓的右頂點
作斜率為
的直線交橢圓
于另一點
,連結
并延長
交橢圓
于點
,當
的面積取得最大值時,求
的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com