【題目】如圖,在四棱錐中,
、
、
均為等邊三角形,
.
(Ⅰ)求證: 平面
;
(Ⅱ)求直線與平面
所成角的正弦值.
【答案】(Ⅰ)證明見解析;(Ⅱ) .
【解析】試題分析:
(Ⅰ)由題意可得,結合箏形的性質可得
,進一步證得
,結合線面垂直的判斷定理和性質可得
平面
,則
.最后利用線面垂直的判斷定理可得
平面
.
(Ⅱ)以為原點,建立空間直角坐標系
,結合題意可得
,平面
的法向量為
,據此計算可得
與平面
所成角的正弦值為
.
試題解析:
(Ⅰ)因為,
,
為公共邊,
所以,
所以,又
,
所以,且
為
中點.
又,所以
,
又,所以
,結合
,
可得,
所以,
即,又
,
故平面
,又
平面
,所以
.
又,所以
平面
.
(Ⅱ)以為原點,建立空間直角坐標系
如圖所示,
不妨設,易得
,
,
則,
,
,
,
所以,
,
,
設平面的法向量為
,則
,即
,解得
,
令得
,
設直線與平面
所成角為
,則
,
所以與平面
所成角的正弦值為
.
科目:高中數學 來源: 題型:
【題目】下列命題:
①對立事件一定是互斥事件;②若A,B為兩個隨機事件,則P(A∪B)=P(A)+P(B);③若事件A,B,C彼此互斥,則P(A)+P(B)+P(C)=1;④若事件A,B滿足P(A)+P(B)=1,則A與B是對立事件.
其中正確命題的個數是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓
的右頂點與上頂點分別為
,橢圓的離心率為
,且過點
.
(1)求橢圓的標準方程;
(2)如圖,若直線與該橢圓交于
兩點,直線
的斜率互為相反數.
①求證:直線的斜率為定值;
②若點在第一象限,設
與
的面積分別為
,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)滿足f(﹣x)=f(x),f(x+8)=f(x),且當x∈(0,4]時f(x)= ,關于x的不等式f2(x)+af(x)>0在[﹣2016,2016]上有且只有2016個整數解,則實數a的取值范圍是( )
A.(﹣ ln6,ln2]
B.(﹣ln2,﹣ ln6)
C.(﹣ln2,﹣ ln6]
D.(﹣ ln6,ln2)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的頂點在原點
,對稱軸是
軸,且過點
.
(Ⅰ)求拋物線的方程;
(Ⅱ)已知斜率為的直線
交
軸于點
,且與曲線
相切于點
,點
在曲線
上,且直線
軸,
關于點
的對稱點為
,判斷點
是否共線,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2sin(ωx+φ)+1()的最小正周期為π,且
.
(1)求ω和φ的值;
(2)函數f(x)的圖象縱坐標不變的情況下向右平移個單位,得到函數g(x)的圖象,
①求函數g(x)的單調增區間;
②求函數g(x)在的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C經過P(4,-2),Q(-1,3)兩點,且在y軸上截得的線段長為4,半徑小于5.
(Ⅰ)求直線PQ與圓C的方程;
(Ⅱ)若直線l∥PQ,直線l與圓C交于點A,B且以線段AB為直徑的圓經過坐標原點,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,平行四邊形ABCD中,AB=2AD,∠DAB=60°,M是BC的中點.將△ADM沿DM折起,使面ADM⊥面MBCD,N是CD的中點,圖2所示.
(Ⅰ)求證:CM⊥平面ADM;
(Ⅱ)若P是棱AB上的動點,當 為何值時,二面角P﹣MC﹣B的大小為60°.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于實數x,符號[x]表示不超過x的最大整數,例如[π]=3,[﹣1.08]=﹣2,定義函數f(x)=x﹣[x],則下列命題中正確的是
①函數f(x)的最大值為1; ②函數f(x)的最小值為0;
③方程有無數個根; ④函數f(x)是增函數.
A. ②③ B. ①②③ C. ② D. ③④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com