【題目】已知曲線方程C:.
(1)當時,求圓心和半徑;
(2)若曲線C表示的圓與直線l: 相交于M,N,且
,求m的值.
【答案】(1)圓心坐標為(1,2),半徑為;(2)m=4.
【解析】試題分析: (1)當m=﹣6時,方程C:x2+y2﹣2x﹣4y+m=0,可化為(x﹣1)2+(y﹣2)2=11,即可求得圓心和半徑;
(2)利用圓心(1,2)到直線l:x+2y﹣4=0的距離公式可求得圓心到直線距離d,利用圓的半徑、弦長之半、d構成的直角三角形即可求得m的值.
試題解析:
(1)當m=﹣6時,方程C:x2+y2﹣2x﹣4y+m=0,可化為(x﹣1)2+(y﹣2)2=11,
圓心坐標為(1,2),半徑為;
(2)∵(x﹣1)2+(y﹣2)2=5﹣m,
∴圓心(1,2)到直線l:x+2y﹣4=0的距離d=,
又圓(x﹣1)2+(y﹣2)2=5﹣m的半徑r=,
,
∴()2+(
)2=5﹣m,得m=4.
科目:高中數學 來源: 題型:
【題目】已知圓,圓心為
,定點
,P為圓
上一點,線段
上一點N滿足
,直線
上一點Q,滿足
.
(Ⅰ) 求點Q的軌跡C的方程;
(Ⅱ) O為坐標原點, 是以
為直徑的圓,直線
與
相切,并與軌跡C交于不同的兩點A,B. 當
且滿足
時,求△OAB面積S的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)△ABC中,角A,B,C所對的邊分別為a,b,c.已知a=3,cos A=,B=A+
.
(1)求b的值;
(2)求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】海關對同時從三個不同地區進口的某種商品進行抽樣檢測,從各地區進口此種商品的數量(單位:件)如下表所示,工作人員用分層抽樣的方法從這些商品中共抽取6件進行檢測.
地區 | |||
數量 | 50 | 150 | 100 |
(1)求這6件樣品中來自各地區商品的數量;
(2)若在這6件樣品中隨機抽取2件送往甲機構進一步檢測,求這2件商品來自相同地區的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)=2 sin(π﹣x)sinx﹣(sinx﹣cosx)2 .
(1)求f(x)的單調遞增區間;
(2)把y=f(x)的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再把得到的圖象向左平移 個單位,得到函數y=g(x)的圖象,求g(
)的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com