精英家教網 > 高中數學 > 題目詳情

【題目】已知:已知函數

Ⅰ)若曲線y=f(x)在點P(2,f(2))處的切線的斜率為﹣6,求實數a;

Ⅱ)若a=1,求f(x)的極值;

【答案】(1)-2; (2)極小值為極大值為.

【解析】分析:(1)求出曲線y=f(x)在點P(2,f(2))處的導數值等于切線的斜率為﹣6,即可求出;

(2)通過a=1時,利用導函數為0,判斷導數符號,即可求f(x)的極值.

詳解:(Ⅰ)因為f′(x)=﹣x2+x+2a,

曲線y=f(x)在點P(2,f(2))處的切線的斜率k=f′(2)=2a﹣2,

2a﹣2=﹣6,a=﹣2

Ⅱ)當a=1時, ,f′(x)=﹣x2+x+2=﹣(x+1)(x﹣2)

x

(﹣∞,﹣1)

﹣1

(﹣1,2)

2

(2,+∞)

f′(x)

0

+

0

f(x)

單調減

單調增

單調減

所以f(x)的極大值為 ,f(x)的極小值為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】將函數fx)=cos2x)的圖象向左平移個單位長度后,得到函數gx)的圖象,則下列結論中正確的是_____.(填所有正確結論的序號)

gx)的最小正周期為4π;

gx)在區間[0,]上單調遞減;

gx)圖象的一條對稱軸為x;

gx)圖象的一個對稱中心為(,0).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】求經過直線L13x + 4y – 5 = 0與直線L22x – 3y + 8 = 0的交點M,且滿足下列條件的直線方程

1)與直線2x + y + 5 = 0平行 ;

2)與直線2x + y + 5 = 0垂直;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著我國經濟模式的改變,電商已成為當今城鄉種新型的購銷平臺.已知經銷某種商品的電商在任何一個銷售季度內,每售出噸該商品可獲利潤萬元,未售出的商品,每噸虧損萬元根據往年的銷售資料,得到該商品一個銷售季度內市場需求量的頻率分布直方圖如圖所示.已知電商為下一個銷售季度籌備了噸該商品,現以單位:噸,)表示下一個銷售季度的市場需求量,(單位:萬 元)表示該電商下“個銷售季度內經銷該商品獲得的利潤.

(1)視分布在各區間內的頻率為相應的概率,求;

(2)將表示為的函數,求出該函數表達式;

(3)在頻率分布直方圖的市場需求量分組中,若以市場需求量落入該區間的頻率作為市場需求量的概率,求該季度利潤不超過萬元的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,五面體ABCDE中,四邊形ABDE是菱形,△ABC是邊長為2的正三角形,∠DBA=60°,
(1)證明:DC⊥AB;
(2)若點C在平面ABDE內的射影H,求CH與平面BCD所成的角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲、乙兩袋中各裝有大小相同的小球9個,其中甲袋中紅色、黑色、白色小球的個數分別為2、3、4,乙袋中紅色、黑色、白色小球的個數均為3,某人用左手從甲袋中取球,用右手從乙袋中取球,

1)若左右手各取一球,求兩只手中所取的球顏色不同的概率;

2)若一次在同一袋中取出兩球,如果兩球顏色相同則稱這次取球獲得成功。某人第一次左手先取兩球,第二次右手再取兩球,記兩次取球的獲得成功的次數為隨機變量X,求X的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某科研課題組通過一款手機APP軟件,調查了某市1000名跑步愛好者平均每周的跑步量(簡稱“周跑量”),得到如下的頻數分布表

周跑量(km/周)

人數

100

120

130

180

220

150

60

30

10

(1)在答題卡上補全該市1000名跑步愛好者周跑量的頻率分布直方圖:

注:請先用鉛筆畫,確定后再用黑色水筆描黑

(2)根據以上圖表數據計算得樣本的平均數為,試求樣本的中位數(保留一位小數),并用平均數、中位數等數字特征估計該市跑步愛好者周跑量的分布特點

(3)根據跑步愛好者的周跑量,將跑步愛好者分成以下三類,不同類別的跑者購買的裝備的價格不一樣,如下表:

周跑量

小于20公里

20公里到40公里

不小于40公里

類別

休閑跑者

核心跑者

精英跑者

裝備價格(單位:元)

2500

4000

4500

根據以上數據,估計該市每位跑步愛好者購買裝備,平均需要花費多少元?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】保險公司統計的資料表明:居民住宅距最近消防站的距離(單位:千米)和火災所造成的損失數額(單位:千元)有如下的統計資料:

(1)請用相關系數(精確到0.01)說明之間具有線性相關關系;

(2)求關于的線性回歸方程(精確到0.01);

(3)若發生火災的某居民區距最近的消防站10.0千米,請評估一下火災損失(精確到0.01).

參考數據:,,

,

參考公式:

回歸直線方程為,其中,,為樣本平均值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在極坐標系中,曲線C的方程為 ,點 ,以極點為原點,極軸為x軸的正半軸,建立平面直角坐標系,兩坐標系中取相同的長度單位.
(1)求曲線C的直角坐標方程及點R的直角坐標;
(2)設P為曲線C上一動點,以PR為對角線的矩形PQRS的一邊垂直于極軸,求矩形PQRS周長的最小值及此時點P的直角坐標.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视