【題目】某地區高考實行新方案,規定:語文、數學和英語是考生的必考科目,考生還須從物理、化學、生物、歷史、地理和政治六個科目中選取三個科目作為選考科目,若一名學生從六個科目中選出了三個科目作為選考科目,則稱該學生的選考方案確定;否則,稱該學生選考方案待確定.例如,學生甲選擇“物理、化學和生物”三個選考科目,則學生甲的選考方案確定,“物理、化學和生物”為其選考方案.
某學校為了了解高一年級420名學生選考科目的意向,隨機選取30名學生進行了一次調查,統計選考科目人數如下表:
性別 | 選考方案確定情況 | 物理 | 化學 | 生物 | 歷史 | 地理 | 政治 |
男生 | 選考方案確定的有8人 | 8 | 8 | 4 | 2 | 1 | 1 |
選考方案待確定的有6人 | 4 | 3 | 0 | 1 | 0 | 0 | |
女生 | 選考方案確定的有10人 | 8 | 9 | 6 | 3 | 3 | 1 |
選考方案待確定的有6人 | 5 | 4 | 1 | 0 | 0 | 1 |
(Ⅰ)估計該學校高一年級選考方案確定的學生中選考生物的學生有多少人?
(Ⅱ)假設男生、女生選擇選考科目是相互獨立的.從選考方案確定的8位男生隨機選出1人,從選考方案確定的10位女生中隨機選出1人,試求該男生和該女生的選考方案中都含有歷史科目的概率;
(Ⅲ)從選考方案確定的8名男生隨機選出2名,設隨機變量兩名男生選考方案相同時,兩名男生選考方案不同時
,求
的分布列及數學期望
.
科目:高中數學 來源: 題型:
【題目】在銳角中,
, _______,求
的周長
的取值范圍.
①,
,且
;
②;
③,
.
注:這三個條件中選一個,補充在上面的問題中并對其進行求解,如果選擇多個條件分別解答,按第一個解答計分.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下表中的數表為“森德拉姆篩”(森德拉姆,東印度學者),其特點是每行每列都成等差數列.
2 | 3 | 4 | 5 | 6 | 7 | … |
3 | 5 | 7 | 9 | 11 | 13 | … |
4 | 7 | 10 | 13 | 16 | 19 | … |
5 | 9 | 13 | 17 | 21 | 25 | … |
6 | 11 | 16 | 21 | 26 | 31 | … |
7 | 13 | 19 | 25 | 31 | 37 | … |
… | … | … | … | … | … | … |
在上表中,2017出現的次數為( )
A. 18 B. 36 C. 48 D. 72
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司欲生產一款迎春工藝品回饋消費者,工藝品的平面設計如圖所示,該工藝品由直角和以
為直徑的半圓拼接而成,點
為半圈上一點(異于
,
),點
在線段
上,且滿足
.已知
,
,設
.
(1)為了使工藝禮品達到最佳觀賞效果,需滿足,且
達到最大.當
為何值時,工藝禮品達到最佳觀賞效果;
(2)為了工藝禮品達到最佳穩定性便于收藏,需滿足,且
達到最大.當
為何值時,
取得最大值,并求該最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線C:,O為坐標原點,F為C的右焦點,過F的直線與C的兩條漸近線的交點分別為M、N.若
OMN為直角三角形,則|MN|=
A. B. 3 C.
D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為
,離心率
,過
且與
軸垂直的直線與橢圓
在第一象限內的交點為
,且
.
(1)求橢圓的方程;
(2)過點的直線
交橢圓
于
兩點,當
時,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】記,其中
為函數
的導數
若對于
,
,則稱函數
為D上的凸函數.
求證:函數
是定義域上的凸函數;
已知函數
,
為
上的凸函數.
求實數a的取值范圍;
求函數
,
的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com