【題目】如圖,四棱錐P-ABCD底面為正方形,PD⊥平面ABCD,PD=AD,點M為線段PA上任意一點(不含端點),點N在線段BD上,且PM=DN.
(1)求證:直線MN∥平面PCD.
(2)若點M為線段PA的中點,求直線PB與平面AMN所成角的余弦值.
科目:高中數學 來源: 題型:
【題目】已知圓,過點
向圓
引兩條切線
,
,切點為
,
,若點
的坐標為
,則直線
的方程為____________;若
為直線
上一動點,則直線
經過定點__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知坐標平面上動點與兩個定點
,
,且
.
(1)求點的軌跡方程,并說明軌跡是什么圖形;
(2)記(1)中軌跡為,過點
的直線
被
所截得的線段長度為8,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,、
是雙曲線
的兩個焦點,一條直線與雙曲線的右支相切,且分別交兩條漸近線于A、B.又設O為坐標原點,求證: (1)
; ⑵
、
、A、B四點在同一個圓上.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知互不重合的直線,互不重合的平面
,給出下列四個命題,正確命題的個數是
①若
,
,
,則
②若,
,
則
③若,
,
,則
④若
,
,則
//
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題:①“”是“存在
,使得
成立”的充分不必要條件;②“
”是“存在
,使得
成立”的必要條件;③“
”是“不等式
對一切
恒成立”的充要條件. 其中所以真命題的序號是
A.③B.②③C.①②D.①③
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,點
在橢圓
上,過點
的直線
的方程為
.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若直線與
軸、
軸分別相交于
兩點,試求
面積的最小值;
(Ⅲ)設橢圓的左、右焦點分別為
,
,點
與點
關于直線
對稱,求證:點
三點共線.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com