【題目】已知橢圓的右焦點為
,過
的直線
與
交于
,
兩點,點
的坐標為
.當
軸時,
的面積為
.
(1)求橢圓的標準方程;
(2)設直線、
的斜率分別為
、
,證明:
.
【答案】(1);(2)見解析
【解析】
(1)由已知條件得b2=a2﹣1,利用通徑公式得出|AB|的表達式,再由△ABM的面積得出有關a的方程,求出a的值,可得出橢圓C的標準方程;
(2)對直線l與x軸垂直、與y軸垂直以及與斜率存在且不為零三種情況討論.在前兩種情況下可直接進行驗證;在第三種情況下,設直線l的方程為y=k(x﹣1)(k≠0),將直線l的方程與橢圓方程聯立,列出韋達定理,利用斜率公式并代入韋達定理,通過化簡計算得出結論成立.
(1)依題意得,即
,
所以當時,解得
,當
軸時,
,
因為,所以
,解得
,
所以橢圓的標準方程為
.
(2)當與
軸重合時,
,滿足條件;當
與
軸垂直時,滿足條件,
當與
軸不重合且不垂直時,設
為
,
,
,
把代入
,得
,
則,
,
因為
,
而,
所以.
科目:高中數學 來源: 題型:
【題目】某公司生產一種電子儀器的固定成本為20000元,每生產一臺儀器需增加投入100元,已知總收益滿足函數: ,其中
是儀器的月產量.(注:總收益=總成本+利潤)
(1)將利潤表示為月產量
的函數;
(2)當月產量為何值時,公司所獲利潤最大?最大利潤為多少元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司訂購了一批樹苗,為了檢測這批樹苗是否合格,從中隨機抽測 株樹苗的高度,經數據處理得到如圖的頻率分布直方圖,起中最高的
株樹苗高度的莖葉圖如圖所示,以這
株樹苗的高度的頻率估計整批樹苗高度的概率.
(1)求這批樹苗的高度高于 米的概率,并求圖19-1中,
,
,
的值;
(2)若從這批樹苗中隨機選取 株,記
為高度在
的樹苗數列,求
的分布列和數學期望.
(3)若變量 滿足
且
,則稱變量
滿足近似于正態分布
的概率分布.如果這批樹苗的高度滿足近似于正態分布
的概率分布,則認為這批樹苗是合格的,將順利獲得簽收;否則,公司將拒絕簽收.試問,該批樹苗能否被簽收?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了研究某種微生物的生長規律,研究小組在實驗室對該種微生物進行培育實驗.前三天觀測的該微生物的群落單位數量分別為12,16,24.根據實驗數據,用y表示第天的群落單位數量,某研究員提出了兩種函數模型;①
;②
,其中a,b,c,p,q,r都是常數.
(1)根據實驗數據,分別求出這兩種函數模型的解析式;
(2)若第4天和第5天觀測的群落單位數量分別為40和72,請從這兩個函數模型中選出更合適的一個,并計算從第幾天開始該微生物群落的單位數量超過1000.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數圖象如圖,
是
的導函數,則下列數值排序正確的是( )
A.
B.
C.
D.
【答案】C
【解析】結合函數的圖像可知過點的切線的傾斜角最大,過點
的切線的傾斜角最小,又因為點
的切線的斜率
,點
的切線斜率
,直線
的斜率
,故
,應選答案C。
點睛:本題旨在考查導數的幾何意義與函數的單調性等基礎知識的綜合運用。求解時充分借助題設中所提供的函數圖形的直觀,數形結合進行解答。先將經過兩切點的直線繞點
逆時針旋轉到與函數的圖像相切,再將經過兩切點的直線繞點
順時針旋轉到與函數的圖像相切,這個過程很容易發現
,從而將問題化為直觀圖形的問題來求解。
【題型】單選題
【結束】
9
【題目】已知、
為雙曲線
:
的左、右焦點,點
在
上,
,則
( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知為實數,數列
滿足
,
.
(Ⅰ)當和
時,分別寫出數列
的前5項;
(Ⅱ)證明:當時,存在正整數
,使得
;
(Ⅲ)當時,是否存在實數
及正整數
,使得數列
的前
項和
?若存在,求出實數
及正整數
的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com