【題目】已知函數的定義域為
,當
時,
,且對任意正實數
,滿足
.
(1)求;
(2)證明在定義域上是減函數;
(3)如果,求滿足不等式
的
的取值范圍.
【答案】(1);(2)證明見解析;(3)
.
【解析】試題分析:(1)由令
,可得
;(2)任取
,且
,則
可得,
,從而可得結果;(3)先根據特值法求得
,原不等式可化為
,
,利用定義域及單調性列不等式組求解即可.
試題解析:(1)令,得
.
(2)任取,且
,則
,
由題意, ,
即,所以
在定義域上是減函數.
(3)由,得
,得
.
由得:
,
,
由在定義域上是減函數得
.
又,
因此的取值范圍為
.
【方法點晴】本題主要考查抽象函數的定義域、解析式、抽象函數的單調性及抽象函數解不等式,屬于難題.根據抽象函數的單調性解不等式應注意以下三點:(1)一定注意抽象函數的定義域(這一點是同學們容易疏忽的地方,不能掉以輕心);(2)注意應用函數的奇偶性(往往需要先證明是奇函數還是偶函數);(3)化成 后再利用單調性和定義域列不等式組.
科目:高中數學 來源: 題型:
【題目】一個袋子里裝有7個球,其中有紅球4個,編號分別為1,2,3,4;白球3個,編號分別為2,3,4.從袋子中任取4個球(假設取到任何一個球的可能性相同).
(Ⅰ)求取出的4個球中,含有編號為3的球的概率;
(Ⅱ)在取出的4個球中,紅球編號的最大值設為X,求隨機變量X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn , 且滿足a1=1,nSn+1﹣(n+1)Sn= ,n∈N*
(1)求a2的值;
(2)求數列{an}的通項公式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某農場共有土地50畝,這些地可種西瓜、棉花、玉米.這些農作物每畝地所需勞力和預計產值如下表.若該農場有20名勞動力,應怎樣計劃才能使每畝地都能種上作物(玉米必種),所有勞動力都被安排工作(每名勞動力只能種植一種作物)且作物預計總產值達最高?
作物 | 勞力/畝 | 產值/畝 |
西瓜 | 1/2 | 0.6萬元 |
棉花 | 1/3 | 0.5萬元 |
玉米 | 1/4 | 0.3萬元 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A、B、C的對邊分別為a、b、c,已知2cos(B﹣C)﹣1=4cosBcosC.
(1)求A;
(2)若a= ,△ABC的面積為
,求b+c.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】共享單車是城市慢行系統的一種模式創新,對于解決民眾出行“最后一公里”的問題特別見效,由于停取方便、租用價格低廉,各色共享單車受到人們的熱捧.某自行車廠為共享單車公司生產新樣式的單車,已知生產新樣式單車的固定成本為20000元,每生產一件新樣式單車需要增加投入100元.根據初步測算,自行車廠的總收益(單位:元)滿足分段函數,其中
是新樣式單車的月產量(單位:件),利潤
總收益
總成本.
(1)試將自行車廠的利潤元表示為月產量
的函數;
(2)當月產量為多少件時自行車廠的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(
>0,
≠1,
≠﹣1),是定義在(﹣1,1)上的奇函數.
(1)求實數的值;
(2)當=1時,判斷函數
在(﹣1,1)上的單調性,并給出證明;
(3)若且
,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com