【題目】設A、B為拋物線C:上兩點,A與B的中點的橫坐標為2,直線AB的斜率為1.
(Ⅰ)求拋物線C的方程;
(Ⅱ)直線 交x軸于點M,交拋物線C:
于點P,M關于點P的對稱點為N,連結ON并延長交C于點H.除H以外,直線MH與C是否有其他公共點?請說明理由.
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別是a,b,c,且 acosC=(2b﹣
c)cosA.
(1)求角A的大。
(2)求cos( ﹣B)﹣2sin2
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓的兩個焦點坐標分別為F1(-,0)和F2(
,0),且橢圓過點
(1)求橢圓方程;
(2)過點作不與y軸垂直的直線l交該橢圓于M,N兩點,A為橢圓的左頂點,證明
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,點0(0,0),P(6,8),將向量 繞點O逆時針方向旋轉
后得向量
,則點Q的坐標是( )
A.(﹣7 ,﹣
)
B.(﹣7 ,
)
C.(﹣4 ,﹣2)
D.(﹣4 ,2)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,點F1(﹣c,0),F2(c,0)分別是橢圓C: (a>b>0)的左右焦點,經過F1做x軸的垂線交橢圓C的上半部分于點P,過點F2作直線PF2垂線交直線
于點Q.
(Ⅰ)如果點Q的坐標是(4,4),求此時橢圓C的方程;
(Ⅱ)證明:直線PQ與橢圓C只有一個交點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列四個結論:
①當a為任意實數時,直線(a﹣1)x﹣y+2a+1=0恒過定點P,則過點P且焦點在y軸上的拋物線的標準方程是;
②已知雙曲線的右焦點為(5,0),一條漸近線方程為2x﹣y=0,則雙曲線的標準方程是;
③拋物線的準線方程為
.
④已知雙曲線,其離心率e∈(1,2),則m的取值范圍是(﹣12,0).
其中正確命題的序號是___________.(把你認為正確命題的序號都填上)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】關于x的不等式ax2+bx+2>0的解集為{x|-1<x<2},則關于x的不等式bx2-ax-2>0的解集為( )
A. {x|-2<x<1} B. {x|x>1或x<-2}
C. {x|x>2或x<-1} D. {x|x<-1或x>1}
【答案】B
【解析】
利用不等式的解集與方程根的關系,求出a,b的值,即可求得不等式bx2﹣ax﹣2>0的解集.
∵關于x的不等式ax2+bx+2>0的解集為(﹣1,2),
∴﹣1,2是ax2+bx+2=0(a<0)的兩根
∴
∴a=﹣1,b=1
∴不等式bx2﹣ax﹣2>0為x2+x﹣2>0,
∴x<﹣2或x>1
故選:B.
【點睛】
(1)二次函數圖象與x軸交點的橫坐標、二次不等式解集的端點值、一元二次方程的解是同一個量的不同表現形式。
(2)二次函數、二次方程與二次不等式統稱“三個二次”,它們常結合在一起,而二次函數又是“三個二次”的核心,通過二次函數的圖象貫穿為一體.有關二次函數的問題,利用數形結合的方法求解,密切聯系圖象是探求解題思路的有效方法.
【題型】單選題
【結束】
6
【題目】已知a,b,c分別是△ABC的內角A,B,C的對邊,若△ABC的周長為2(+1),且sin B+sin C=
sin A,則a= ( )
A. B. 2 C. 4 D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義域為R的偶函數f(x)滿足對任意的x∈R,有f(x+2)=f(x)﹣f(1),且當x∈[2,3]時,f(x)=﹣(x﹣2)2+1.若函數y=f(x)﹣a(x﹣)在(0,+∞)上恰有三個零點,則實數a的取值范圍是( )
A.( , 3)
B.( ,
)
C.(3,12)
D.( , 12)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于任意實數a,b,定義max{a,b}= , 已知在[﹣2,2]上的偶函數f(x)滿足當0≤x≤2時,f(x)=max{2x﹣1,2﹣x}若方程f(x)﹣mx+1=0恰有兩個根,則m的取值范圍是( 。
A.[﹣2,﹣eln2)∪(eln2,2]
B.[﹣eln2,0)∪(0,eln2]
C.[﹣2,0)∪(0,2]
D.[﹣e,﹣2)∪(2,e]
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com