【題目】在平面直角坐標系中,點0(0,0),P(6,8),將向量 繞點O逆時針方向旋轉
后得向量
,則點Q的坐標是( )
A.(﹣7 ,﹣
)
B.(﹣7 ,
)
C.(﹣4 ,﹣2)
D.(﹣4 ,2)
科目:高中數學 來源: 題型:
【題目】某校從參加高三年級期末統考測試的學生中抽出80名學生,其數學成績(均為整數)的頻率分布直方圖如圖所示.
(Ⅰ)估計這次測試數學成績的中位數;
(Ⅱ)假設在[90,100]段的學生的數學成績都不相同,且都超過94分.若將頻率視為概率,現用簡單隨機抽樣的方法,從95,96,97,98,99,100這6個數中任意抽取3個數,有放回地抽取了3次,記這3次抽取中,恰好是三個學生的數學成績的次數為,求
的分布列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中以O為極點,x軸正半軸為極軸建立坐標系.圓C1 , 直線C2的極坐標方程分別為ρ=4sinθ,ρcos( )=2
.
(1)求C1與C2交點的極坐標;
(2)設P為C1的圓心,Q為C1與C2交點連線的中點,已知直線PQ的參數方程為 (t∈R為參數),求a,b的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓:
,(
為坐標原點),直線
:
.拋物線
:
.
(Ⅰ)過直線上任意一點
作圓
的兩條切線,切點為
.求四邊形
的面積最小值;
(Ⅱ)若圓過點
,且圓心
在拋物線
上,
是圓
在
軸上截得的弦,試探究
運動時,弦長
是否為定值?并說明理由;
(Ⅲ) 過點的直線
分別與圓
交于點
兩點,若
,問直線
是否過定點?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面圖形ABB1A1C1C如圖4所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC= ,A1B1=A1C1=
.現將該平面圖形分別沿BC和B1C1折疊,使△ABC與△A1B1C1所在平面都與平面BB1C1C垂直,再分別連接A2A,A2B,A2C,得到如圖2所示的空間圖形,對此空間圖形解答下列問題.
(Ⅰ)證明:AA1⊥BC;
(Ⅱ)求AA1的長;
(Ⅲ)求二面角A﹣BC﹣A1的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設A、B為拋物線C:上兩點,A與B的中點的橫坐標為2,直線AB的斜率為1.
(Ⅰ)求拋物線C的方程;
(Ⅱ)直線 交x軸于點M,交拋物線C:
于點P,M關于點P的對稱點為N,連結ON并延長交C于點H.除H以外,直線MH與C是否有其他公共點?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l經過拋物線x2=4y的焦點,且與拋物線交于A,B兩點,點O為坐標原點.
(1)求拋物線準線方程;
(2)若△AOB的面積為4,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某高三年級從甲(文)乙(理)兩個年級組各選出7名學生參加高校自主招生數學選拔考試,他們取得的成績(滿分:100分)的莖葉圖如圖所示,其中甲組學生的平均分是85分,乙組學生成績的中位數是83分.
(1)求x和y的值;
(2)從成績在90分以上的學生中隨機取兩名學生,求甲組至少有一名學生的概率
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com