【題目】在第十五次全國國民閱讀調查中,某地區調查組獲得一個容量為的樣本,其中城鎮居民
人,農村居民
人.在這些居民中,經常閱讀的城鎮居民
人,農村居民
人.
(Ⅰ)填寫下面列聯表,并判斷是否有的把握認為,經常閱讀與居民居住地有關?
城鎮居民 | 農村居民 | 合計 | |
經常閱讀 | |||
不經常閱讀 | |||
合計 |
(Ⅱ)從該地區居民城鎮的居民中,隨機抽取位居民參加一次閱讀交流活動,記這
位居民中經常閱讀的人數為
,若用樣本的頻率作為概率,求隨機變量
的分布列和期望.
附:,其中
科目:高中數學 來源: 題型:
【題目】某社區消費者協會為了解本社區居民網購消費情況,隨機抽取了100位居民作為樣本,就最近一年來網購消費金額(單位:千元),網購次數和支付方式等進行了問卷調査.經統計這100位居民的網購消費金額均在區間內,按
,
,
,
,
,
分成6組,其頻率分布直方圖如圖所示.
(1)估計該社區居民最近一年來網購消費金額的中位數;
(2)將網購消費金額在20千元以上者稱為“網購迷”,補全下面的列聯表,并判斷有多大把握認為“網購迷與性別有關系”;
男 | 女 | 合計 | |
網購迷 | 20 | ||
非網購迷 | 45 | ||
合計 | 100 |
(3)調査顯示,甲、乙兩人每次網購采用的支付方式相互獨立,兩人網購時間與次數也互不. 影響.統計最近一年來兩人網購的總次數與支付方式,所得數據如下表所示:
網購總次數 | 支付寶支付次數 | 銀行卡支付次數 | 微信支付次數 | |
甲 | 80 | 40 | 16 | 24 |
乙 | 90 | 60 | 18 | 12 |
將頻率視為概率,若甲、乙兩人在下周內各自網購2次,記兩人采用支付寶支付的次數之和為,求
的數學期望.
附:觀測值公式:
臨界值表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】過拋物線的焦點
且斜率為
的直線
與拋物線交于
兩點(
在第一象限),以
為直徑的圓分別與
軸相切于
兩點,則下列結論正確的是( )
A.拋物線的焦點
坐標為
B.
C.為拋物線
上的動點,
,則
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為迎接2022年冬奧會,北京市組織中學生開展冰雪運動的培訓活動,并在培訓結束后對學生進行了考核.記表示學生的考核成績,并規定
為考核優秀.為了了解本次培訓活動的效果,在參加培訓的學生中隨機抽取了30名學生的考核成績,并作成如下莖葉圖:
(Ⅰ)從參加培訓的學生中隨機選取1人,請根據圖中數據,估計這名學生考核優秀的概率;
(Ⅱ)從圖中考核成績滿足的學生中任取2人,求至少有一人考核優秀的概率;
(Ⅲ)記表示學生的考核成績在區間
的概率,根據以往培訓數據,規定當
時培訓有效.請根據圖中數據,判斷此次中學生冰雪培訓活動是否有效,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,C、D是離心率為的橢圓的左、右頂點,
、
是該橢圓的左、右焦點, A、B是直線
4上兩個動點,連接AD和BD,它們分別與橢圓交于點E、F兩點,且線段EF恰好過橢圓的左焦點
. 當
時,點E恰為線段AD的中點.
(Ⅰ)求橢圓的方程;
(Ⅱ)求證:以AB為直徑的圓始終與直線EF相切.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】研究機構對某校學生往返校時間的統計資料表明:該校學生居住地到學校的距離(單位:千米)和學生花費在上學路上的時間
(單位:分鐘)有如下的統計資料:
到學校的距離 | 1.8 | 2.6 | 3.1 | 4.3 | 5.5 | 6.1 |
花費的時間 | 17.8 | 19.6 | 27.5 | 31.3 | 36.0 | 43.2 |
如果統計資料表明與
有線性相關關系,試求:
(1)判斷與
是否有很強的線性相關性?
(相關系數的絕對值大于0.75時,認為兩個變量有很強的線性相關性,精確到0.01)
(2)求線性回歸方程(精確到0.01);
(3)將分鐘的時間數據
稱為美麗數據,現從這6個時間數據
中任取2個,求抽取的2個數據全部為美麗數據的概率.
參考數據:,
,
,
,
,
參考公式:,
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com