精英家教網 > 高中數學 > 題目詳情

【題目】如圖,C、D是離心率為的橢圓的左、右頂點,是該橢圓的左、右焦點, A、B是直線4上兩個動點,連接ADBD,它們分別與橢圓交于點E、F兩點,且線段EF恰好過橢圓的左焦點. 當時,點E恰為線段AD的中點.

(Ⅰ)求橢圓的方程;

(Ⅱ)求證:以AB為直徑的圓始終與直線EF相切.

【答案】(Ⅰ) (Ⅱ)見證明

【解析】

(Ⅰ)由題意可得,結合可求出,進而可求得橢圓的方程;(Ⅱ)設EF的方程為:,E()、F(),與橢圓聯立,運用韋達定理得,,又設,由三點共線得,求出中點坐標,求出點M到直線EF的距離,進而證得結果.

(Ⅰ)∵當時,點E恰為線段AD的中點,

,又,聯立解得:,,

∴橢圓的方程為.

(Ⅱ)設EF的方程為:,E()、F(),

聯立得:

……(*)

又設,由A、E、D三點共線得,同理可得.

.

設AB中點為M,則M坐標為()即( ),

∴點M到直線EF的距離.

故以AB為直徑的圓始終與直線EF相切.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】(本小題滿分14分)如圖,四棱錐的底面ABCD 是平行四邊形,平面PBD平面 ABCD, PB=PD,,,,分別是,的中點,連結.求證:

(1)平面;

(2)平面

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若曲線在點處的切線方程是,求函數上的值域;

(2)當時,記函數,若函數有三個零點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于定義在上的函數,若函數滿足:在區間上單調遞減;存在常數,使其值域為,則稱函數是函數的“漸近函數”.

1)求證:函數不是函數的“漸近函數”;

2)判斷函數是不是函數,的“漸近函數”,并說明理由;

3)若函數,,求證:是函數的“漸近函數”充要條件是.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在第十五次全國國民閱讀調查中,某地區調查組獲得一個容量為的樣本,其中城鎮居民人,農村居民人.在這些居民中,經常閱讀的城鎮居民人,農村居民人.

(Ⅰ)填寫下面列聯表,并判斷是否有的把握認為,經常閱讀與居民居住地有關?

城鎮居民

農村居民

合計

經常閱讀

不經常閱讀

合計

(Ⅱ)從該地區居民城鎮的居民中,隨機抽取位居民參加一次閱讀交流活動,記這位居民中經常閱讀的人數為,若用樣本的頻率作為概率,求隨機變量的分布列和期望.

附:,其中

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】地球海洋面積遠遠大于陸地面積,隨著社會的發展,科技的進步,人類發現海洋不僅擁有巨大的經濟利益,還擁有著深遠的政治利益.聯合國于第63屆聯合國大會上將每年的68日確定為“世界海洋日”.201968日,某大學的行政主管部門從該大學隨機抽取100名大學生進行一次海洋知識測試,并按測試成績(單位:分)分組如下:第一組[6570),第二組[70,75),第二組[75,80),第四組[80,85),第五組[85,90],得到頻率分布直方圖如下圖:

1)求實數的值;

2)若從第四組、第五組的學生中按組用分層抽樣的方法抽取6名學生組成中國海洋實地考察小隊,出發前,用簡單隨機抽樣方法從6人中抽取2人作為正、副隊長,列舉出所有的基本事件并求“抽取的2人為不同組”的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面上給定相異兩點AB,設P點在同一平面上且滿足,當時,P點的軌跡是一個圓,這個軌跡最先由古希臘數學家阿波羅尼斯發現,故我們稱這個圓為阿波羅尼斯圓,現有雙曲線),A,B為雙曲線的左、右頂點,C,D為雙曲線的虛軸端點,動點P滿足,面積的最大值為,面積的最小值為4,則雙曲線的離心率為______.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,圓的方程為,且圓軸交于兩點,設直線的方程為.

(1)當直線與圓相切時,求直線的方程;

(2)已知直線與圓相交于兩點.(i),求直線的方程;(ii)直線與直線相交于點,直線,直線,直線的斜率分別為,,是否存在常數,使得恒成立?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線)經過點,直線與拋物線有兩個不同的交點、,直線軸于,直線軸于.

(1)若直線過點,求直線的斜率的取值范圍;

(2)若直線過點,設,,求的值;

(3)若直線過拋物線的焦點,交軸于點,,求的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视