【題目】已知數列{an}滿足:,且an+1
(n=1,2…)集合M={an|
}中的最小元素記為m.
(1)若a1=20,寫出m和a10的值:
(2)若m為偶數,證明:集合M的所有元素都是偶數;
(3)證明:當且僅當時,集合M是有限集.
【答案】(1)6,22;(2)證明見解析;(3)證明見解析.
【解析】
(1)利用遞推公式依次求出數列的前10項,推導出集合
中的最小元素
.
.
(2)推導出,當
時,
或
,由
為偶數,得到
為偶數,
為偶數,由此能證明若
為偶數,則集合
的所有元素都是偶數.
(3)推導出,當
時,
.從而集合
.由此能證明當且僅當
時,集合
是有限集.
因為數列滿足:
,且
集合中的最小元素記為
.
所以,
,
,
,
,
,
,
,
,
所以集合中的最小元素
.
.
(2)證明:因為數列滿足:
,且
,
集合中的最小元素
為偶數.
所以,當
時,
或
,
因為為偶數,
為偶數,
為偶數,
所以若為偶數,則集合
的所有元素都是偶數.
(3)證明:因為數列滿足:
,且
,
集合中的最小元素
為偶數.當且僅當
,
所以,
當
時,
.
得集合.
所以,當且僅當時,集合
是有限集.
科目:高中數學 來源: 題型:
【題目】某農場所對冬季晝夜溫差大小與某反季大豆新品種發芽多少之間的關系進行分析研究,他們分別記錄了2019年12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發芽數,得到如下表:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發芽數y(顆) | 23 | 25 | 30 | 26 | 16 |
該農科所確定的研究方案是:先從這五組數據中選取2組,用剩下的3組數據求線性回歸方程,再對被選取的兩組數據進行檢驗.
(1)求選取的2組數據恰好是不相鄰的2天數據的概率;
(2)若選取的是12月1日與12月5日的兩組數據,請根據12月2日至12月4日的數據,求出y關于x的線性回歸方程;并預報當溫差為
時,種子發芽數.
附:回歸直線方程:,其中
;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某品牌服裝店為了慶祝開業兩周年,特舉辦“你敢買,我就送”的回饋活動,規定店慶當日進店購買指定服裝的消費者可參加游戲,贏取獎金,游戲分為以下兩種:
游戲 1:參加該游戲贏取獎金的成功率為,成功后可獲得
元獎金;
游戲 2:參加該游戲贏取獎金的成功率為,成功后可得
元獎金;
無論參與哪種游戲,未成功均沒有收獲,每人有且僅有一次機會,且每次游戲成功與否均互不影響,游戲結束后可到收銀臺領取獎金。
(Ⅰ)已知甲參加游戲 1,乙參加游戲 2,記甲與乙獲得的總獎金為,若
,求
的值;
(Ⅱ)若甲、乙、丙三人都選擇游戲 1或都選擇游戲 2,問:他們選擇何種規則,累計得到獎金的數學期望值最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定點,動點
在
軸上運動,過點
作直線
交
軸于點
,延長
至點
,使
.
點
的軌跡是曲線
.
(1)求曲線的方程;
(2)若,
是曲線
上的兩個動點,滿足
,證明:直線
過定點;
(3)若直線與曲線
交于
,
兩點,且
,
,求直線
的斜率
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為降低空氣污染,提高環境質量,政府決定對汽車尾氣進行整治.某廠家生產甲、乙兩種不同型號的汽車尾氣凈化器,為保證凈化器的質量,分別從甲、乙兩種型號的凈化器中隨機抽取100件作為樣本進行產品性能質量評估,評估綜合得分都在區間
.已知評估綜合得分與產品等級如下表:
根據評估綜合得分,統計整理得到了甲型號的樣本頻數分布表和乙型號的樣本頻率分布直方圖(圖表如下).
甲型 乙型
(Ⅰ)從廠家生產的乙型凈化器中隨機抽取一件,估計這件產品為二級品的概率;
(Ⅱ)從廠家生產的乙型凈化器中隨機抽取3件,設隨機變量為其中二級品的個數,求
的分布列和數學期望;
(Ⅲ)根據圖表數據,請自定標準,對甲、乙兩種型號汽車尾氣凈化器的優劣情況進行比較.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com