【題目】已知函數,
.
(1)當時,若關于
的不等式
恒成立,求
的取值范圍;
(2)當時,證明:
.
科目:高中數學 來源: 題型:
【題目】已知,函數F(x)=min{2|x1|,x22ax+4a2},
其中min{p,q}=
(Ⅰ)求使得等式F(x)=x22ax+4a2成立的x的取值范圍;
(Ⅱ)(ⅰ)求F(x)的最小值m(a);
(ⅱ)求F(x)在區間[0,6]上的最大值M(a).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,梯形中,
,
,
,
為
的中點,將
沿
翻折,構成一個四棱錐
,如圖2.
(1)求證:異面直線與
垂直;
(2)求直線與平面
所成角的大;
(3)若三棱錐的體積為
,求點
到平面
的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中國古代數學著作《算法統宗》中記載了這樣的一個問題:“三百七十八里關,初行健步不為難,次日腳痛減一半,六朝才得到其關,要見次日行里數,請公仔細算相還”,其大意為:有一個人走了378里路,第一天健步行走,從第二天起其因腳痛每天走的路程為前一天的一半,走了6天后到達了目的地,問此人第三天走的路程里數為( )
A.192B.48C.24D.88
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,圓經過伸縮變換
后得到曲線
.以坐標原點為極點,
軸的正半軸為極軸,并在兩種坐標系中取相同的單位長度,建立極坐標系,直線
的極坐標方程為
.
(1)求曲線的直角坐標方程及直線
的直角坐標方程;
(2)設點是
上一動點,求點
到直線
的距離的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,直線
的參數方程為
(
為參數),以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)寫出直線的直角坐標方程;
(2)設點的坐標為
,若點
是曲線
截直線
所得線段的中點,求
的斜率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】政府工作報告指出,2018年我國深入實施創新驅動發展戰略,創新能力和效率進一步提升;2019年要提升科技支撐能力,健全以企業為主體的產學研一體化創新機制.某企業為了提升行業核心競爭力,逐漸加大了科技投入;該企業連續6年來的科技投入(百萬元)與收益
(百萬元)的數據統計如下:
科技投入 | 2 | 4 | 6 | 8 | 10 | 12 |
收益 |
根據散點圖的特點,甲認為樣本點分布在指數曲線的周圍,據此他對數據進行了一些初步處理,如下表:
其中,
.
(1)(i)請根據表中數據,建立關于
的回歸方程(保留一位小數);
(ii)根據所建立的回歸方程,若該企業想在下一年的收益達到2億,則科技投入的費用至少要多少(其中)?
(2)乙認為樣本點分布在二次曲線的周圍,并計算得回歸方程為
,以及該回歸模型的相關指數
,試比較甲、乙兩位員工所建立的模型,誰的擬合效果更好.
附:對于一組數據,
,…,
,其回歸直線方程
的斜率和截距的最小二乘估計分別為
,
,相關指數:
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com