【題目】在直角坐標系中,曲線
的參數方程為
(
為參數),將曲線
上各點縱坐標伸長到原來的
倍(橫坐標不變),得到曲線
.以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,直線
的極坐標方程為
.
(1)寫出曲線的極坐標方程與直線
的直角坐標方程;
(2)曲線上是否存在不同的兩點
,
(以上兩點坐標均為極坐標,
,
,
,
),使點
、
到
的距離都為
?若存在,求出
的值;若不存在,請說明理由.
【答案】(1),
;(2)存在,
【解析】
(1)首先根據題意求出曲線的參數方程為
(
為參數),從而得到直角坐標方程,再轉化為極坐標方程即可.根據
,
,將直線的極坐標方程轉化為直角坐標方程即可.
(2)首先計算曲線的圓心到直線
的距離,結合圖象得到存在這樣的點
,再利用極坐標計算
的值即可.
(1)由曲線的參數方程為
(
為參數),
將曲線上各點縱坐標伸長到原來的
倍(橫坐標不變),
得到曲線的參數方程為
(
為參數),
得到曲線的直角坐標方程為
,其極坐標方程為
,
又直線的極坐標方程為
,
故其直角坐標方程為.
(2)曲線是以
為圓心,
為半徑的圓,
圓心到直線
的距離
,
所以存在這樣的點,
,且點
到直線
的距離為
,
如圖所示:
因為,所以
,
即:.
又因為,
,
,
所以.
科目:高中數學 來源: 題型:
【題目】已知雙曲線的左、右焦點分別為F1、F2,過點F1作圓x2+y2=a2的切線交雙曲線右支于點M,若tan∠F1MF2=2,又e為雙曲線的離心率,則e2的值為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P-ABCD的底面是平行四邊形,PD⊥AB,O是AD的中點,BO=CO.
(1)求證:AB⊥平面PAD;
(2)若AD=2AB=4, PA=PD,點M在側棱PD上,且PD=3MD,二面角P-BC-D的大小為,求直線BP與平面MAC所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,三棱柱中,側棱
底面
,底面三角形
是正三角形,E是BC中點,則下列敘述正確的是( )
A.與
是異面直線B.
平面
C.AE,為異面直線,且
D.
平面
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數和函數
,關于這兩個函數圖像的交點個數,下列四個結論:①當
時,兩個函數圖像沒有交點;②當
時,兩個函數圖像恰有三個交點;③當
時,兩個函數圖像恰有兩個交點;④當
時,兩個函數圖像恰有四個交點.正確結論的個數為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2020年春季,某出租汽車公同決定更換一批新的小汽車以代替原來報廢的出租車,現有采購成本分別為11萬元/輛和8萬元/輛的A,B兩款車型,根據以往這兩種出租車車型的數據,得到兩款出租車型使用壽命頻數表如表:
(1)填寫如表,并判斷是否有99%的把握認為出租車的使用壽命年數與汽車車有關?
(2)以頻率估計概率,從2020年生產的A和B的車型中各隨機抽1車,以X表示這2車中使用壽命不低于7年的車數,求X的分布列和數學期望;
(3)根據公司要求,采購成本由出租公司負責,平均每輛出租每年上交公司6萬元,其余維修和保險等費用自理,假設每輛出租車的使用壽命都是整數年,用頻率估計每輛出租車使用壽命的概率,分別以這100輛出租車所產生的平均利潤作為決策依據,如果你是該公司的負責人,會選擇采購哪款車型?
參考公式:,其中n=a+b+c+d.
參考數據:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,三棱錐中,底面
是邊長為2的正三角形,
,
底面
,點
分別為
,
的中點.
(1)求證:平面平面
;
(2)在線段上是否存在點
,使得直線
與平面
所成的角的余弦值為
?若存在,確定點
的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以平面直角坐標系的原點為極點,
軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的長度單位,已知直線
的參數方程為
,曲線
的極坐標方程為
求直線
的普通方程與曲線
的直角坐標方程;
若把曲線
上給點的橫坐標伸長為原來的
倍,縱坐標伸長為原來的
倍,得到曲線
,設點
是曲線
上的一個動點,求它到直線
的距離的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com