【題目】已知函數f(x)=4x2-kx-8.
(1)若函數y=f(x)在區間[2,10]上單調,求實數k的取值范圍;
(2)若y=f(x)在區間(-∞,2]上有最小值-12,求實數k的值
【答案】(1) (-∞,16]∪[80,+∞).
(2) 實數k的值為8或-8.
【解析】分析:(1)討論y=f(x)在區間[2,10]上的單調性,可得對稱軸與區間的關系,解不等式即可得到所求范圍;
(2)討論對稱軸和區間的關系,可得對稱軸處取最小值;或在2處取最小值,分別得到關于k的方程解之即可得到所求值.
詳解:(1)函數f(x)=4x2﹣kx﹣8的對稱軸為x=,
若函數y=f(x)在區間[2,10]上單調遞增,
即有≤2,解得k≤16;
若函數y=f(x)在區間[2,10]上單調遞減,
即有≥10,解得k≥80.
則實數k的取值范圍為k≥80或k≤16;
(2)當≥2即k≥16時,區間(﹣∞,2]為減區間,
即有f(2)為最小值,且為16﹣2k﹣8=﹣12,解得k=10<16,不成立;
當<2即k<16時,區間(﹣∞,
)遞減,(
,2]為增區間,
即有f()為最小值,且為﹣8﹣
=﹣12,解得k=±8.
綜上可得,k的值為±8.
科目:高中數學 來源: 題型:
【題目】大型綜藝節目《最強大腦》中,有一個游戲叫做盲擰魔方,就是玩家先觀察魔方狀態并進行記憶,記住后蒙住眼睛快速還原魔方,盲擰在外人看來很神奇,其實原理是十分簡單的,要學會盲擰也是很容易的.根據調查顯示,是否喜歡盲擰魔方與性別有關.為了驗證這個結論,某興趣小組隨機抽取了50名魔方愛好者進行調查,得到的情況如下表所示:
喜歡盲擰 | 不喜歡盲擰 | 總計 | |
男 | 22 | ▲ | 30 |
女 | ▲ | 12 | ▲ |
總計 | ▲ | ▲ | 50 |
表1
并邀請這30名男生參加盲擰三階魔方比賽,其完成情況如下表所示:
成功完成時間(分鐘) | [0,10) | [10,20) | [20,30) | [30,40] |
人數 | 10 | 10 | 5 | 5 |
表2
(1)將表1補充完整,并判斷能否在犯錯誤的概率不超過0.025的前提下認為是否喜歡盲擰與性別有關?
(2)根據表2中的數據,求這30名男生成功完成盲擰的平均時間(同一組中的數據用該組區間的中點值代替);
(3)現從表2中成功完成時間在[0,10)內的10名男生中任意抽取3人對他們的盲擰情況進行視頻記錄,記成功完成時間在[0,10)內的甲、乙、丙3人中被抽到的人數為,求
的分布列及數學期望
.
附參考公式及數據:,其中.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面
是直角梯形,側棱
底面
,
垂直于
和
,
為棱
上的點,
,
.
(1)若為棱
的中點,求證:
//平面
;
(2)當時,求平面
與平面
所成的銳二面角的余弦值;
(3)在第(2)問條件下,設點是線段
上的動點,
與平面
所成的角為
,求當
取最大值時點
的位置.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商場舉行促銷活動,有兩個摸獎箱,箱內有一個“
”號球,兩個“
”號球,三個“
”號球、四個無號球,
箱內有五個“
”號球,五個“
”號球,每次摸獎后放回,每位顧客消費額滿
元有一次
箱內摸獎機會,消費額滿
元有一次
箱內摸獎機會,摸得有數字的球則中獎,“
”號球獎
元,“
”號球獎
元,“
”號球獎
元,摸得無號球則沒有獎金。
(1)經統計,顧客消費額服從正態分布
,某天有
位顧客,請估計消費額
(單位:元)在區間
內并中獎的人數.(結果四舍五入取整數)
附:若,則
,
.
(2)某三位顧客各有一次箱內摸獎機會,求其中中獎人數
的分布列.
(3)某顧客消費額為元,有兩種摸獎方法,
方法一:三次箱內摸獎機會;
方法二:一次箱內摸獎機會.
請問:這位顧客選哪一種方法所得獎金的期望值較大.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列關于函數的判斷正確的是( )
①的解集是
;②當
時有極小值,當
時有極大值;
③沒有最小值,也沒有最大值.
A. ①③ B. ①②③ C. ② D. ①②
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】渦陽縣某華為手機專賣店對市民進行華為手機認可度的調查,在已購買華為手機的名市民中,隨機抽取
名,按年齡(單位:歲)進行統計的頻數分布表和頻率分布直方圖如圖:
分組(歲) | 頻數 |
合計 |
(1)求頻數分布表中、
的值,并補全頻率分布直方圖;
(2)在抽取的這名市民中,從年齡在
、
內的市民中用分層抽樣的方法抽取
人參加華為手機宣傳活動,現從這
人中隨機選取
人各贈送一部華為手機,求這
人中恰有
人的年齡在
內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市舉行“中學生詩詞大賽”,分初賽和復賽兩個階段進行,規定:初賽成績大于90分的具有復賽資格,某校有800名學生參加了初賽,所有學生的成績均在區間(30,150]內,其頻率分布直方圖如圖.則獲得復賽資格的人數為()
A.640B.520C.280D.240
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校研究性學習小組調查學生使用智能手機對學習成績的影響,部分統計數據如下表:
使用智能手機 | 不使用智能手機 | 總計 | |
學習成績優秀 | 4 | 8 | 12 |
學習成績不優秀 | 16 | 2 | 18 |
總計 | 20 | 10 | 30 |
(Ⅰ)根據以上列聯表判斷,能否在犯錯誤的概率不超過0.005的前提下認為使用智能手機對學習成績有影響?
(Ⅱ)從學習成績優秀的12名同學中,隨機抽取2名同學,求抽到不使用智能手機的人數的分布列及數學期望.
參考公式:,其中
參考數據:
0.05 | 0,。025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com