【題目】為弘揚民族古典文化,學校舉行古詩詞知識競賽,某輪比賽由節目主持人隨機從題庫中抽取題目讓選手搶答,回答正確給改選手記正10分,否則記負10分.根據以往統計,某參賽選手能答對每一個問題的概率為;現記“該選手在回答完
個問題后的總得分為
”.
(1)求且
的概率;
(2)記,求
的分布列,并計算數學期望
.
科目:高中數學 來源: 題型:
【題目】某高校在2016年的自主招生考試成績中隨機抽取100名學生的筆試成績,按成績分組,得到的頻率分布如圖所示.
(1)請先求出頻率分布表中①、②位置相應的數據,再畫出頻率分布直方圖;
(2)該高校決定在筆試成績高的第3、4、5組中用分層抽樣抽取6名學生進入第二輪面試,求第3、4、5組每組各抽取多少名學生進入第二輪面試?
(3)在(2)的前提下,學校決定在6名學生中隨機抽取2名學生接受考官的面試,求第4組至少有一名學生被考官面試的概率?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某運動員每次投籃命中的概率都為40%,現采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產生0到9之間取整數值的隨機數,指定1,2,3,4表示命中;5,6,7,8,9,0表示不命中;再以每三個隨機數為一組,代表三次投籃的結果,經隨機模擬產生了如下20組隨機數:
137 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據此估計,該運動員三次投籃恰有兩次命中的概率為( )
A.0.40 B.0.30
C.0.35 D.0.25
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知直線:
(
為參數),以坐標原點為極點,
軸正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
,且
與
相交于
兩點.
(1)當時,判斷直線
與曲線
的位置關系,并說明理由;
(2)當變化時,求弦
的中點
的普通方程,并說明它是什么曲線.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,
為兩非零有理數列(即對任意的
,
均為有理數),
為一無理數列(即對任意的
,
為無理數).
(1)已知,并且
對任意的
恒成立,試求
的通項公式.
(2)若為有理數列,試證明:對任意的
,
恒成立的充要條件為
.
(3)已知,
,對任意的
,
恒成立,試計算
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線:
的焦點為
,平行于
軸的兩條直線
,
分別交
于
,
兩點,交
的準線于
,
兩點.
(1)若在線段
上,
是
的中點,證明:
;
(2)若△的面積是△
的面積的兩倍,求
中點的軌跡方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的中心在坐標原點,焦點在
軸上,離心率
,且橢圓
經過點
,過橢圓
的左焦點
且不與坐標軸垂直的直線交橢圓
于
,
兩點.
(1)求橢圓的方程;
(2)設線段的垂直平分線與
軸交于點
,求△
的面積
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com