精英家教網 > 高中數學 > 題目詳情

【題目】有一個長方形木塊,三個側面積分別為8,1224,現將其削成一個正四面體模型,則該正四面體模型棱長的最大值為(

A.2B.C.4D.

【答案】B

【解析】

先求長方體從同一頂點出發的三條棱的長度,從而可得正四面體模型棱長的最大值.

設長方體從同一頂點出發的三條棱的長分別為,則,故,

若能從該長方體削得一個棱長最長的正四面體模型,

則該四面體的頂點必在長方體的面內,

過正四面體的頂點作垂直于長方體的棱的垂面切割長方體,

含正四面體的幾何體必為正方體, 故正四面體的棱長為正方體的面對角線的長,

而從長方體切割出一個正方體,使得面對角線的長最大,

需以最小棱長為切割后的正方體的棱長切割才可,

故所求的正四面體模型棱長的最大值.

故選:B.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】造紙術、印刷術、指南針、火藥被稱為中國古代四大發明,此說法最早由英國漢學家艾約瑟提出并為后來許多中國的歷史學家所繼承,普遍認為這四種發明對中國古代的政治,經濟,文化的發展產生了巨大的推動作用.某小學三年級共有學生500名,隨機抽查100名學生并提問中國古代四大發明,能說出兩種發明的有45人,能說出3種及其以上發明的有32人,據此估計該校三級的500名學生中,對四大發明只能說出一種或一種也說不出的有(

A.69B.84C.108D.115

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】李明自主創業,在網上經營一家水果店,銷售的水果中有草莓、京白梨、西瓜、桃,價格依次為60/盒、65/盒、80/盒、90/盒.為增加銷量,李明對這四種水果進行促銷:一次購買水果的總價達到120元,顧客就少付x元.每筆訂單顧客網上支付成功后,李明會得到支付款的80%

①當x=10時,顧客一次購買草莓和西瓜各1盒,需要支付__________元;

②在促銷活動中,為保證李明每筆訂單得到的金額均不低于促銷前總價的七折,則x的最大值為__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐S—ABCD中,底面ABCD,底面ABCD是矩形,且ESA的中點.

1)求證:平面BED平面SAB;

2)求平面BED與平面SBC所成二面角(銳角)的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】每個國家對退休年齡都有不一樣的規定,從2018年開始我國關于延遲退休的話題一直在網上熱議,為了了解市民對“延遲退休”的態度,現從某地市民中隨機選取100人進行調查,調查情況如下表:

年齡段(單位:歲)

被調查的人數

贊成的人數

1)從贊成“延遲退休”的人中任選1人,此人年齡在的概率為,求出表格中的值;

2)在被調查的人中,年齡低于35歲的人可以認為“低齡人”,年齡不低于35歲的人可以認為“非低齡人”,試作出是否贊成“延遲退休”與“低齡與否”的列聯表,并指出有無的把握認為是否贊成“延遲退休”與“低齡與否”有關,并說明理由.

附:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,分別為的左頂點和上頂點,若的中點的縱坐標為.分別為的左、右焦點.

1)求橢圓的方程;

2)設直線交于兩點,,的重心分別為.若原點在以為直徑的圓內,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著共享單車的成功運營,更多的共享產品逐步走人大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產品層出不窮,某公司隨機抽取1000人對共享產品是否對日常生活有益進行了問卷調查,并對參與調查的1000人中的性別以及意見進行了分類,得到的數據如下表所示:

總計

認為共享產品對生活有益

認為共享產品對生活無益

總計

1)求出表格中的值,并根據表中的數據,判斷能否在犯錯誤的概率不超過的前提下,認為對共享產品的態度與性別有關系?

2)現按照分層抽樣從認為共享產品對生活無益的人員中隨機抽取6人,再從6人中隨機抽取2人贈送超市購物券作為答謝,求恰有1人是女性的概率.

參考公式:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】大荔縣某高中一社團為調查學生學習圍棋的情況,隨機抽取了名學生進行調查.根據調查結果繪制的學生均學習圍棋時間的頻率分布直方圖.將日均學習圍棋時不低于分鐘的學生稱為“圍棋迷”.

非圍棋迷

圍棋迷

合計

合計

1)根據已知條件完成下面的列聯表,并據此資料你是否有的把握認為“圍棋迷”與性別有關?

2)現在從參與本次抽樣調查的名學生的男同學里面,依據是否為圍棋迷,采用分層抽樣的方法抽取名學生參與圍棋知識競賽,再從人中任選人參與知識競賽的賽前保障工作.求選到的人恰好是一個“圍棋迷”和一個“非圍棋迷”的概率?

附:,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱柱中,平面ABCD,四邊形ABCD為平行四邊形,.

1)若,求證://平面

2)若,且三棱錐的體積為,求.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视