【題目】我國南北朝時期的數學家祖暅提出了一條原理:“冪勢既同,則積不容異”即夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平面的任意平面所截,如果截得的兩個截面的面積總相等,那么這兩個幾何體的體積相等.橢球是橢圓繞其長軸旋轉所成的旋轉體,如圖,將底面半徑都為.高都為
的半橢球和已被挖去了圓錐的圓柱(被挖去的圓錐以圓柱的上底面為底面,下底面的圓心為頂點)放置于同一平面
上,用平行于平面
且與平面
任意距離
處的平面截這兩個幾何體,截面分別為圓面和圓環,可以證明
圓=
圓環總成立.據此,橢圓的短半軸長為2,長半軸長為4的橢球的體積是( )
A.B.
C.
D.
科目:高中數學 來源: 題型:
【題目】F是拋物線的焦點,M是拋物線C上位于第一象限內的任意一點,過
三點的圓的圓心為Q,點Q到拋物線C的準線的距離為
.
(1)求拋物線C的方程;
(2)若點M的橫坐標為,直線
與拋物線C有兩個不同的交點A,B,l與圓Q有兩個不同的交點D,E,求當
時,
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線
的參數方程為
(其中
為參數,且
,在以
為極點、
軸的非負半軸為極軸的極坐標系(兩種坐標系取相同的單位長度)中,曲線
的極坐標方程為
,設直線
經過定點
,且與曲線
交于
、
兩點.
(Ⅰ)求點的直角坐標及曲線
的直角坐標方程;
(Ⅱ)求證:不論為何值時,
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線
的參數方程為
為參數),以坐標原點
為極點,
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.曲線
的極坐標方程為
,曲線
與曲線
的交線為直線
.
(1)求直線和曲線
的直角坐標方程;
(2)直線與
軸交于點
,與曲線
相交于
,
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設V是空間中2019個點構成的集合,其中任意四點不共面某些點之間連有線段,記E為這些線段構成的集合.試求最小的正整數n,滿足條件:若E至少有n個元素,則E一定含有908個二元子集,其中每個二元子集中的兩條線段有公共端點,且任意兩個二元子集的交為空集.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
(1)討論函數的單調性;
(2)當時,證明曲線
分別在點
和點
處的切線為不同的直線;
(3)已知過點能作曲線
的三條切線,求
,
所滿足的條件.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】武漢出現的新型冠狀病毒是一種可以通過飛沫傳播的變異病毒,某藥物研究所為篩查該新型冠狀病毒,需要檢驗血液是否為陽性,現有份血液樣本,每份樣本取到的可能性均等,有以下兩種檢驗方式:①逐份檢驗,則需要檢驗n次;②混合檢驗,將其中
份血液樣本分別取樣混合在一起檢驗.若檢驗結果為陰性,這k份血液全為陰性,因此這k份血液樣本檢驗一次就夠了,如果檢驗結果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對這k份血液再逐份檢驗,此時這k份血液的檢驗次數總共為
次.假設在接受檢驗的血液樣本中,每份樣本的檢驗結果是陰性還是陽性都是獨立的,且每份樣本是陽性結果的概率為
.
(1)假設有5份血液樣本,其中只有2份為陽性,若采取逐份檢驗方式,求恰好經過2次檢驗就能把陽性樣本全部檢驗出來的概率;
(2)現取其中份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的次數為
,采用混合檢驗方式,樣本需要檢驗的總次數為
.
(i)試運用概率統計知識,若,試求P關于k的函數關系式
;
(ii)若,采用混合檢驗方式可以使得這k份血液樣本需要檢驗的總次數的期望值比逐份檢驗的總次數期望值更少,求k的最大值.
參考數據:,
,
,
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年4月,河北、遼寧、江蘇、福建、湖北、湖南、廣東、重慶等8省市發布高考綜合改革實施方案,決定從2018年秋季入學的高中一年級學生開始實施“”高考模式.所謂“
”,即“3”是指考生必選語文、數學、外語這三科;“1”是指考生在物理、歷史兩科中任選一科;“2”是指考生在生物、化學、思想政治、地理四科中任選兩科.
(1)若某考生按照“”模式隨機選科,求選出的六科中含有“語文,數學,外語,物理,化學”的概率.
(2)新冠疫情期間,為積極應對“”新高考改革,某地高一年級積極開展線上教學活動.教育部門為了解線上教學效果,從當地不同層次的學校中抽取高一學生2500名參加語數外的網絡測試,并給前400名頒發榮譽證書,假設該次網絡測試成績服從正態分布,且滿分為450分.
①考生甲得知他的成績為270分,考試后不久了解到如下情況:“此次測試平均成績為171分,351分以上共有57人”,請用你所學的統計知識估計甲能否獲得榮譽證書,并說明理由;
②考生丙得知他的實際成績為430分,而考生乙告訴考生丙:“這次測試平均成績為201分,351分以上共有57人”,請結合統計學知識幫助丙同學辨別乙同學信息的真偽,并說明理由.
附:;
;
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)的圖象的一個最高點為(),與之相鄰的一個對稱中心為
,將f(x)的圖象向右平移
個單位長度得到函數g(x)的圖象,則( )
A.g(x)為偶函數
B.g(x)的一個單調遞增區間為
C.g(x)為奇函數
D.函數g(x)在上有兩個零點
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com