精英家教網 > 高中數學 > 題目詳情

【題目】20194月,河北、遼寧、江蘇、福建、湖北、湖南、廣東、重慶等8省市發布高考綜合改革實施方案,決定從2018年秋季入學的高中一年級學生開始實施高考模式.所謂,即“3”是指考生必選語文、數學、外語這三科;“1”是指考生在物理、歷史兩科中任選一科;“2”是指考生在生物、化學、思想政治、地理四科中任選兩科.

1)若某考生按照模式隨機選科,求選出的六科中含有語文,數學,外語,物理,化學的概率.

2)新冠疫情期間,為積極應對新高考改革,某地高一年級積極開展線上教學活動.教育部門為了解線上教學效果,從當地不同層次的學校中抽取高一學生2500名參加語數外的網絡測試,并給前400名頒發榮譽證書,假設該次網絡測試成績服從正態分布,且滿分為450.

①考生甲得知他的成績為270分,考試后不久了解到如下情況:此次測試平均成績為171分,351分以上共有57,請用你所學的統計知識估計甲能否獲得榮譽證書,并說明理由;

②考生丙得知他的實際成績為430分,而考生乙告訴考生丙:這次測試平均成績為201分,351分以上共有57,請結合統計學知識幫助丙同學辨別乙同學信息的真偽,并說明理由.

附:;

.

【答案】1;(2)①能,理由見解析;②無法辨別乙同學信息真假,理由見解析

【解析】

1)已經選出五科,再從剩余三個科目中選1個科目的方法為,計算出從物理、歷史里選一門,生物、化學、思想政治、地理4門中選2門的總方案數,即可得其概率.

2)①由題意可知, ,而 ,結合原則可求得的值,結合獲獎概率,并求得,比較后可求得獲獎的最低成績,即可由甲的成績得知甲能否獲得榮譽證書.

②假設乙所說為真,求得,進而求得的值,從而確定的值,即可確定的概率.比較后即可知該事件為小概率事件,而丙已經有這個成績,因而可判斷乙所說為假.

解:(1)設事件A:選出的六科中含有語文,數學,外語,物理,化學,

2)設此次網絡測試的成績記為X,則

①由題知,因為,且

所以,而

所以前400名的成績的最低分高于

,所以甲同學能獲得榮譽證書

②假設乙所說的為真,則

,

,所以,從而,

答案示例1:可以認為乙同學信息為假,理由如下:

事件為小概率事件,即丙同學的成績為430是小概率事件,可認為其不可能發生,但卻又發生了,所以可認為乙同學信息為假;

答案示例2:無法辨別乙同學信息真假,理由如下:

事件丙同學的成績為430發生的概率雖然很小,一般不容易發生,但是還是有可能發生的,所以無法辨別乙同學信息真假.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知定義在R上的函數滿足:(1);(2);(3)時,.大小關系

A. B.

C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】,,數列的前項和,點)均在函數的圖像上.

(1)求數列的通項公式;

(2)設,是數列的前項和,求滿足)的最大正整數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了積極支持雄安新區建設,某投資公司計劃明年投資1000萬元給雄安新區甲、乙兩家科技企業,以支持其創新研發計劃,經有關部門測算,若不受中美貿易戰影響的話,每投入100萬元資金,在甲企業可獲利150萬元,若遭受貿易戰影響的話,則將損失50萬元;同樣的情況,在乙企業可獲利100萬元,否則將損失20萬元,假設甲、乙兩企業遭受貿易戰影響的概率分別為0.6和0.5.

(1)若在甲、乙兩企業分別投資500萬元,求獲利1250萬元的概率;

(2)若在兩企業的投資額相差不超過300萬元,求該投資公司明年獲利約在什么范圍內?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設有2009個人站成一排,從第一名開始13報數,凡報到3的就退出隊伍,其余的向前靠攏站成新的一排.再按此規則繼續進行,直到第次報數后只剩下3人為止.試問:最后剩下的3人最初站在什么位置?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】,橢圓與雙曲線的焦點相同.

(1)求橢圓與雙曲線的方程;

(2)過雙曲線的右頂點作兩條斜率分別為,的直線,,分別交雙曲線于點,,不同于右頂點),若,求證:直線的傾斜角為定值,并求出此定值;

(3)設點,若對于直線,橢圓上總存在不同的兩點關于直線對稱,且,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中,三個內角所對的邊分別為,滿足.

(1) 求角的大;

(2),求,的值.(其中

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.

(1)求A∪B,(CUA)∩B;

(2)若A∩C≠,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知三棱錐(如圖一)的平面展開圖(如圖二)中,為邊長等于的正方形,△和△均為正三角形,在三棱錐中,

1)求證:;

2)求與平面所成的角的大。

3)求二面角的大小.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视