【題目】已知二次函數g(x)=mx2﹣2mx+n+1(m>0)在區間[0,3]上有最大值4,最小值0.
(Ⅰ)求函數g(x)的解析式;
(Ⅱ)設f(x)= .若f(2x)﹣k2x≤0在x∈[﹣3,3]時恒成立,求k的取值范圍.
【答案】解:(Ⅰ)∵g(x)=m(x﹣1)2﹣m+1+n
∴函數g(x)的圖象的對稱軸方程為x=1
∵m>0依題意得 ,
即 ,
解得
∴g(x)=x2﹣2x+1,
(Ⅱ)∵
∴ ,
∵f(2x)﹣k2x≤0在x∈[﹣3,3]時恒成立,
即 在x∈[﹣3,3]時恒成立
∴ 在x∈[﹣3,3]時恒成立
只需
令 ,
由x∈[﹣3,3]得
設h(t)=t2﹣4t+1
∵h(t)=t2﹣4t+1
=(t﹣2)2﹣3
∴函數h(x)的圖象的對稱軸方程為t=2
當t=8時,取得最大值33.
∴k≥h(t)max=h(8)=33
∴k的取值范圍為[33,+∞)
【解析】(Ⅰ)由題意得方程組解出即可,(Ⅱ)將f(x)進行變形,通過換元求出函數h(t)的最值,從而求出k的值.
科目:高中數學 來源: 題型:
【題目】已知定義在R上的函數 (m為實數)為偶函數,記a=f(log0.53),b=f(log25),c=f(2m),則a,b,c的大小關系為( )
A.a<b<c
B.b<a<c
C.c<a<b
D.a<c<b
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)
設函數.
(1)求的單調區間和極值;
(2)若關于的方程
有3個不同實根,求實數a的取值范圍;
(3)已知當恒成立,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點A(0,﹣2),橢圓E: =1(a>b>0)的離心率為
,F是橢圓的焦點,直線AF的斜率為
,O為坐標原點.
(Ⅰ)求E的方程;
(Ⅱ)設過點A的直線l與E相交于P,Q兩點,當△OPQ的面積最大時,求l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商品最近30天的價格f(t)(元)與時間t滿足關系式:f(t)= ,且知銷售量g(t)與時間t滿足關系式 g(t)=﹣t+30,(0≤t≤30,t∈N+),求該商品的日銷售額的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合A={x|﹣2≤x≤5},B={x|m+1≤x≤2m﹣1}.
(1)當m=3時,求集合A∩B,A∪B;
(2)若BA,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數其中實數
為常數且
.
(I)求函數的單調區間;
(II)若函數既有極大值,又有極小值,求實數
的取值范圍及所有極值之和;
(III)在(II)的條件下,記分別為函數
的極大值點和極小值點,
求證: .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com