【題目】對于函數f(x)= ,設f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N* , 且n≥2),令集合M={x|f2036(x)=x,x∈R},則集合M為( )
A.空集
B.實數集
C.單元素集
D.二元素集
科目:高中數學 來源: 題型:
【題目】已知互不重合的直線,互不重合的平面
,給出下列四個命題,正確命題的個數是
①若
,
,
,則
②若,
,
則
③若,
,
,則
④若
,
,則
//
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右兩個焦點分別為
,離心率
,短軸長為2.
(Ⅰ)求橢圓的方程;
(Ⅱ)設點為橢圓上的一動點(非長軸端點),
的延長線與橢圓交于
點,
的延長線與橢圓交于
點,若
面積為
,求直線
的方程.
【答案】(Ⅰ)(Ⅱ)
或
【解析】試題分析:(Ⅰ)由題意得,再由
橢圓的方程為
;(Ⅱ)①當直線
斜率不存在時,不妨取
面積為
,不符合題意. ②當直線
斜率存在時,設直線
, 由
得
,再求點
的直線
的距離
點
到直線
的距離為
面積為
∴
或
所求方程為
或
.
試題解析:
(Ⅰ)由題意得,∴
,
∵,∴
,
∴橢圓的方程為.
(Ⅱ)①當直線斜率不存在時,不妨取
,
∴面積為
,不符合題意.
②當直線斜率存在時,設直線
,
由化簡得
,
設,
∴
,
∵點的直線
的距離
,
又是線段
的中點,∴點
到直線
的距離為
,
∴面積為
,
∴,∴
,∴
,∴
或
,
∴直線的方程為
或
.
【題型】解答題
【結束】
25
【題目】已知函數.
(Ⅰ)求函數的單調區間與極值;
(Ⅱ)若,且
,證明:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖放置的邊長為2的正三角形ABC沿x軸滾動,記滾動過程中頂點A的橫、縱坐標分別為和
,且
是
在映射
作用下的象,則下列說法中:
① 映射的值域是
;
② 映射不是一個函數;
③ 映射是函數,且是偶函數;
④ 映射是函數,且單增區間為
,
其中正確說法的序號是___________.
說明:“正三角形ABC沿x軸滾動”包括沿x軸正方向和沿x軸負方向滾動.沿x軸正方向滾動指的是先以頂點B為中心順時針旋轉,當頂點C落在x軸上時,再以頂點C為中心順時針旋轉,如此繼續.類似地,正三角形ABC可以沿x軸負方向滾動.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A、B均為銳角,則cosA>sinB是△ABC為鈍角三角形的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數是定義域為
的奇函數,當
.
(Ⅰ)求出函數在
上的解析式;
(Ⅱ)在答題卷上畫出函數的圖象,并根據圖象寫出
的單調區間;
(Ⅲ)若關于的方程
有三個不同的解,求
的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖為橢圓C:
的左、右焦點,D,E是橢圓的兩個頂點,橢圓的離心率
,
的面積為
.若點
在橢圓C上,則點
稱為點M的一個“橢圓”,直線
與橢圓交于A,B兩點,A,B兩點的“橢圓”分別為P,Q.
(1)求橢圓C的標準方程;
(2)問是否存在過左焦點的直線
,使得以PQ為直徑的圓經過坐標原點?若存在,求出該直線的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com