精英家教網 > 高中數學 > 題目詳情

為提高學生的素質,學校決定開設一批選修課程,分別為“文學”、“藝術”、“競賽”三類,這三類課程所含科目的個數分別占總數的,現有3名學生從中任選一個科目參加學習(互不影響),記為3人中選擇的科目屬于“文學”或“競賽”的人數,求的分布列及期望。

的分布列為


0
1
2
3
p
1/64
9/64
27/64
27/64
9/4

解析試題分析:設為3人中選擇的科目屬于藝術的人數,則,由題設知
,
所以的分布列為


0
1
2
3
p
1/64
9/64
27/64
27/64
所以
考點:本小題主要考查離散型隨機變量的分布列和數學期望.
點評:本題考查離散型隨機變量的分布列和數學期望,解題時要認真審題,仔細解答,注意二項分布的性質的靈活運用.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

甲、乙、丙三人獨立破譯同一份密碼,已知甲、乙、丙各自破譯出密碼的概率分別為、、,且他們是否破譯出密碼互不影響,若三人中只有甲破譯出密碼的概率為
(1)求的值.
(2)設甲、乙、丙三人中破譯出密碼的人數為,求的分布列和數學期望

查看答案和解析>>

科目:高中數學 來源: 題型:解答題


由于某高中建設了新校區,為了交通方便要用三輛通勤車從老校區把教師接到新校區.已知從新校區到老校區有兩條公路,汽車走一號公路堵車的概率為,不堵車的概率為;汽車走二號公路堵車的概率為p,不堵車的概率為1-p,若甲、乙兩輛汽車走一號公路,丙汽車由于其他原因走二號公路,且三輛車是否堵車相互之間沒有影響.
(Ⅰ)若三輛汽車中恰有一輛汽車被堵的概率為,求走二號公路堵車的概率;
(Ⅱ)在(Ⅰ)的條件下,求三輛汽車中被堵車輛的個數ξ的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

一個袋中裝有大小相同的球10個,其中紅球8個,黑球2個,現從袋中有放回地取球,每次隨機取1個. 求:
(1)連續取兩次都是紅球的概率;
(2)如果取出黑球,則取球終止,否則繼續取球,直到取出黑球,但取球次數最多不超過4次,求取到黑球的概率。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某網站用“10分制”調查一社區人們的幸福度.現從調查人群中隨機抽取16名, 以下莖葉圖記錄了他們的幸福度分數(以小數點前的一位數字為莖, 小數點后的一位數字為葉):

(1) 指出這組數據的眾數和中位數;
(2) 若幸福度不低于9.5分, 則稱該人的幸福度為“極幸!.求從這16人中隨機選取3人, 至多有1人是“極幸!钡母怕;
(3) 以這16人的樣本數據來估計整個社區的總體數據, 若從該社區(人數很多)任選3人, 記表示抽到“極幸!钡娜藬, 求的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某廣場上有4盞裝飾燈,晚上每盞燈都隨機地閃爍紅燈或綠燈,每盞燈出現紅燈的概率都是,出現綠燈的概率都是.記這4盞燈中出現紅燈的數量為,當這排裝飾燈閃爍一次時:
(1)求時的概率;(2)求的數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在某校高三學生的數學校本課程選課過程中,規定每位同學只能選一個科目。已知某班第一小組與第二小組各 有六位同學選擇科目甲或科 目乙,情況如下表:

 
科目甲
科目乙
總計
第一小組
1
5
6
第二小組
2
4
6
總計
3
9
12
現從第一小組、第二小 組中各任選2人分析選課情況.
(1)求選出的4 人均選科目乙的概率;
(2)設為選出的4個人中選科目甲的人數,求的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

為了防止受到核污染的產品影響我國民眾的身體健康,要求產品進入市場前必須進行兩輪核放射檢測,只有兩輪都合格才能進行銷售。已知某產品第一輪檢測不合格的概率為,第二輪檢測不合格的概率為,兩輪檢測是否合格相互沒有影響。
(1)求該產品不能銷售的概率
(2)如果產品可以銷售,則每件產品可獲利40元;如果產品不能銷售,則每件產品虧損80元(即獲利-80元)。已知一箱中有4件產品,記可銷售的產品數為X,求X的分布列,并求一箱產品獲利的均值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某商場有獎銷售中,購滿100元商品得1張獎券,多購多得。每1000張獎券為一個開獎單位,其中含特等獎1個,一等獎10個,二等獎50個。設1張獎券中特等獎、一等獎、二等獎的事件分別為A、B、C,求:
(1)P(A),P(B),P(C);
(2)1張獎券的中獎概率;
(3)1張獎券不中特等獎且不中一等獎的概率。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视