【題目】已知雙曲線的方程為
,離心率
,頂點到漸近線的距離為
(1)求雙曲線的方程;
(2)設是雙曲線
上
點,
,
兩點在雙曲線
的兩條漸近線上,且分別位于第一、二象限,若
,求
面積的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知定義在上的偶函數
,滿足
,且在區間
上是增函數,
①函數的一個周期為4;
②直線是函數
圖象的一條對稱軸;
③函數在
上單調遞增,在
上單調遞減;
④函數在
內有25個零點;
其中正確的命題序號是_____(注:把你認為正確的命題序號都填上)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某競賽的題庫系統有60%的自然科學類題目,40%的文化生活類題目(假設題庫中的題目總數非常大),參賽者需從題庫中抽取3個題目作答,有兩種抽取方法:方法一是直接從題庫中隨機抽取3個題目;方法二是先在題庫中按照題目類型用分層抽樣的方法抽取10個題目作為樣本,再從這10個題目中任意抽取3個題目.
(1)兩種方法抽取的3個題目中,恰好有1個自然科學類題目和2個文化生活類題目的概率是否相同?若相同,說明理由;若不同,分別計算出兩種抽取方法對應的概率.
(2)已知某參賽者抽取的3個題目恰好有1個自然科學類題目和2個文化生活類題目,且該參賽者答對自然科學類題目的概率為,答對文化生活類題目的概率為
.設該參賽者答對的題目數為X,求X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動點M到定點的距離和它到直線
的距離的比是常數
.
(1)求動點M的軌跡方程;
(2)令(1)中方程表示曲線C,點S(2,0),過點B(1,0)的直線l與曲線C相交于P,Q兩點,求△PQS的面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線C:,O為坐標原點,F為C的右焦點,過F的直線與C的兩條漸近線的交點分別為M、N.若
OMN為直角三角形,則|MN|=
A. B. 3 C.
D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4— 4:坐標系與參數方程
設極坐標系與直角坐標系有相同的長度單位,原點
為極點,
軸正半軸為極軸,曲線
的參數方程為
(
是參數),直線
的極坐標方程為
.
(Ⅰ)求曲線的普通方程和直線
的參數方程;
(Ⅱ)設點,若直線
與曲線
相交于
兩點,且
,求
的值﹒
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,PA=PD,四邊形ABCD為等腰梯形,BC∥AD,BC=CD
AD=1,E為PA的中點.
(1)求證:EB∥平面PCD;
(2)求平面PAC與平面PCD所成角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有甲、乙兩家公司都需要招聘求職者,這兩家公司的聘用信息如下:
甲公司 | 乙公司 | |||||||||
職位 | A | B | C | D | 職位 | A | B | C | D | |
月薪/元 | 6000 | 7000 | 8000 | 9000 | 月薪/元 | 5000 | 7000 | 9000 | 11000 | |
獲得相應職位概率 | 0.4 | 0.3 | 0.2 | 0.1 | 獲得相應職位概率 | 0.4 | 0.3 | 0.2 | 0.1 | |
(1)根據以上信息,如果你是該求職者,你會選擇哪一家公司?說明理由;
(2)某課外實習作業小組調查了1000名職場人士,就選擇這兩家公司的意愿做了統計,得到以下數據分布:
選擇意愿 人員結構 | 40歲以上(含40歲)男性 | 40歲以上(含40歲)女性 | 40歲以下男性 | 40歲以下女性 |
選擇甲公司 | 110 | 120 | 140 | 80 |
選擇乙公司 | 150 | 90 | 200 | 110 |
若分析選擇意愿與年齡這兩個分類變量,計算得到的K2的觀測值為k1=5.5513,測得出“選擇意愿與年齡有關系”的結論犯錯誤的概率的上限是多少?并用統計學知識分析,選擇意愿與年齡變量和性別變量哪一個關聯性更大?
附:
0.050 | 0.025 | 0.010 | 0.005 | |
3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列滿足:
,
(
),數列
滿足:
,
(
),數列
的前
項和為
.
(1)求數列的通項公式;
(2)求證:數列是等比數列;
(3)求證:數列是遞增數列;若當且僅當
時,
取得最小值,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com