【題目】已知點F為橢圓(a>b>0)的一個焦點,點A為橢圓的右頂點,點B為橢圓的下頂點,橢圓上任意一點到點F距離的最大值為3,最小值為1.
(1)求橢圓的標準方程;
(2)若M、N在橢圓上但不在坐標軸上,且直線AM∥直線BN,直線AN、BM的斜率分別為k1和k2,求證:k1k2=e2﹣1(e為橢圓的離心率).
【答案】(1)(2)證明見解析
【解析】
(1)根據橢圓上任意一點到點F距離的最大值為3,最小值為1,則有求解.
(2)由(1)可知,A(2,0),B(0,),分別設直線AM的方程為y=k(x﹣2),直線BN的方程為y=kx
,與橢圓方程聯立,用韋達定理求得點M,N的坐標,再利用斜率公式代入k1k2求解.
(1)由題意可知,,解得
,
∴b2=a2﹣c2=3,
∴橢圓的標準方程為:;
(2)由(1)可知,A(2,0),B(0,),
設直線AM的斜率為k,則直線BN的斜率也為k,
故直線AM的方程為y=k(x﹣2),直線BN的方程為y=kx,
由得:(3+4k2)x2﹣16k2x+16k2﹣12=0,
∴,∴
,
,
∴,
由得:
,
∴,
,
∴,
∴,
,
∴k1k2,
又∵,
∴k1k2=e2﹣1.
科目:高中數學 來源: 題型:
【題目】為實現國民經濟新“三步走”的發展戰略目標,國家加大了扶貧攻堅的力度,某地區在2015年以前的年均脫貧率(脫貧的戶數占當年貧困戶總數的比)為70%,2015年開始全面實施“精準扶貧”政策后,扶貧效果明顯提高,其中2019年度實施的扶貧項目,各項目參加戶數占比(參加戶數占2019年貧困總戶數的比)及該項目的脫貧率見下表:
實施項目 | 種植業 | 養殖業 | 工廠就業 |
參加占戶比 | 45% | 45% | 10% |
脫貧率 | 96% | 96% | 90% |
那么2019年的年脫貧率是實施“精準扶貧”政策前的年均脫貧率的( )倍.
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于定義域為的函數
,如果存在區間
滿足
是
上的單調函數,且
在區間
上的值域也為
,則稱函數
為區間
上的“保值函數”,
為“保值區間”.根據此定義給出下列命題:①函數
是
上的“保值函數”;②若函數
是
上的“保值函數”,則
;③對于函數
存在區間
,且
,使函數
為
上的“保值函數”.其中所有真命題的序號為( )
A.②B.③C.①③D.②③
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x﹣1|+|2x+2|,g(x)=|x+2|﹣|x﹣2a|+a.
(1)求不等式f(x)>4的解集;
(2)對x1∈R,x2∈R,使得f(x1)≥g(x2)成立,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國著名數學家華羅庚先生曾說:數缺形時少直觀,形缺數時難入微,數形結合百般好,隔裂分家萬事休.在數學的學習和研究中,常用函數的圖象研究函數的性質,也常用函數的解析式來琢磨函數的圖象特征.如函數的圖象大致為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:(a>b>0)過點E(
,1),其左、右頂點分別為A,B,左、右焦點為F1,F2,其中F1(
,0).
(1)求橢圓C的方程:
(2)設M(x0,y0)為橢圓C上異于A,B兩點的任意一點,MN⊥AB于點N,直線l:x0x+2y0y﹣4=0,設過點A與x軸垂直的直線與直線l交于點P,證明:直線BP經過線段MN的中點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,來自“一帶一路”沿線的20國青年評選出了中國的“新四大發明”:高鐵、掃碼支付、共享單車和網購.其中共享單車既響應綠色出行號召,節能減排,保護環境,又方便人們短距離出行,增強靈活性.某城市試投放3個品牌的共享單車分別為紅車、黃車、藍車,三種車的計費標準均為每15分鐘(不足15分鐘按15分鐘計)1元,按每日累計時長結算費用,例如某人某日共使用了24分鐘,系統計時為30分鐘.A同學統計了他1個月(按30天計)每天使用共享單車的時長如莖葉圖所示,不考慮每月自然因素和社會因素的影響,用頻率近似代替概率.設A同學每天消費元.
(1)求的分布列及數學期望;
(2)各品牌為推廣用戶使用,推出APP注冊會員的優惠活動:紅車月功能使用費8元,每天消費打5折;黃車月功能使用費20元,每天前15分鐘免費,之后消費打8折;藍車月功能使用費45元,每月使用22小時之內免費,超出部分按每15分鐘1元計費.設分別為紅車,黃車,藍車的月消費,寫出
與
的函數關系式,參考(1)的結果,A同學下個月選擇其中一個注冊會員,他選哪個費用最低?
(3)該城市計劃3個品牌的共享單車共3000輛正式投入使用,為節約居民開支,隨機調查了100名用戶一周的平均使用時長如下表:
時長 | (0,15] | (15,30] | (30,45] | (45,60] |
人數 | 16 | 45 | 34 | 5 |
在(2)的活動條件下,每個品牌各應該投放多少輛?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com