精英家教網 > 高中數學 > 題目詳情

【題目】已知奇函數上單調遞減,且,則不等式的解集________.

【答案】

【解析】

根據題意,由奇函數的性質可得f(﹣3)=0,結合函數的單調性分析可得fx)>0fx)<0的解集,又由(x1fx)>0,分析可得x的取值范圍,即可得答案.

根據題意,fx)為奇函數且f3)=0,則f(﹣3)=0,

又由fx)在(﹣∞,0)上單調遞減,則在(﹣∞,﹣3)上,fx)>0,在(﹣3,0)上,fx)<0,

又由fx)為奇函數,則在(03)上,fx)>0,在(3+∞)上,fx)<0,

fx)<0的解集為(﹣3,0)∪(3,+∞),fx)>0的解集為(﹣∞,﹣3)∪(0,3);

x1fx)>0,

分析可得:﹣1x01x3,

故不等式的解集為(﹣3,0)∪(1,3);

故答案為(﹣3,0)∪(1,3);

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某廠生產某種產品的年固定成本為250萬元,每生產千件,需另投入成本,當年產量不足80千件時,(萬元);當年產量不小于80千件時,(萬元),每件售價為0.05萬元,通過市場分析,該廠生產的商品能全部售完.

1)寫出年利潤(萬元)關于年產量(千件)的函數解析式;

2)年產量為多少千件時,該廠在這一商品的生產中所獲利潤最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】1-2020個整數中隨機選擇一個數,設事件A表示選到的數能被2整除,事件B表示選到的數能被3整除,求下列事件的概率;

1)這個數既能被2整除也能被3整除;

2)這個數能被2整除或能被3整除;

3)這個數既不能被2整除也不能被3整除.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數,已知不單調,且其導函數存在唯一零點.

(1)求的取值范圍;

(2)若集合,,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】ABC中,角A,B,C所對的邊分別為a,b,c,且acosC+ccosA=2bcosA.
(1)求角A的值;
(2)若, ,求ABC的面積S.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設全集U=R,集合A={x|2x-1≥1},B={x|x2-4x-5<0}.

(Ⅰ)求AB,(UA)∪(UB);

(Ⅱ)設集合C={x|m+1<x<2m-1},若BC=C,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某高校共有15000人,其中男生10500人,女生4500人,為調查該校學生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300位學生每周平均體育運動時間的樣本數據(單位:小時).

I)應收集多少位男生樣本數據?

II)根據這300個樣本數據,得到學生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數據分組區間為:,,,,,,試估計該校學生每周平均體育運動時間超過4個小時的概率;

(Ⅲ)在樣本數據中,有165位男生的每周平均體育運動時間超過4個小時請完成每周平均體育運動時間與性別的列聯表,并判斷是否有%的把握認為該校學生的每周平均體育運動時間與性別有關”.

男生

女士

總計

每周平均體育運動時

間不超過4小時

每周平均體育運動時

間超過4小時

總計

附:

0.10

0.05

0.010

0.005

k

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2018年俄羅斯世界杯將于2018年6月14日至7月15日在俄羅斯境內座城市的座球場內舉行,共有支球隊參加比賽,其中歐洲有支球隊參賽,中北美球隊有支球隊參賽,亞洲、南美洲、非洲各有支球隊參賽,所有參賽球隊被平均分入個小組.已知小組的支隊伍來自不同的大洲,東道主俄羅斯(俄羅斯屬于歐洲球隊)和墨西哥(墨西哥屬于中北美球隊)在小組中,那么南美洲球隊巴西隊在小組的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列命題:(1)正方形的四條邊相等;(2)有兩個角是的三角形是等腰直角三角形;(3)正數的平方根不等于0;(4)至少有一個正整數是偶數;是全稱量詞命題的有________;是存在量詞命題的有________.(填序號)

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视