精英家教網 > 高中數學 > 題目詳情

【題目】甲、乙兩人玩猜數字游戲,先由甲心中想一個數字,記為a,再由乙猜甲剛才所想的數字,把乙猜的數字記為b,其中a,b∈{1,2,3,4,5,6},若|a-b|≤1,就稱甲、乙“心有靈犀”.現任意找兩人玩這個游戲,則他們“心有靈犀”的概率為(  )

A. B. C. D.

【答案】D

【解析】

試驗包含的所有事件是任意找兩人玩這個游戲,其中滿足條件的滿足|a-b|1的情形包括6種,列舉出所有結果,根據計數原理得到所有的事件數,根據古典概型概率公式得到結果.

由題意知本題是一個古典概型,

試驗包含的所有事件是任意找兩人玩這個游戲,共有種猜字結果,

其中滿足的有如下情形:

,則,2;,則,23;

,則3,4,則,4,5;

,則,56;,則6,

總共16種,

他們“心有靈犀”的概率為

故選:

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,平面平面.四邊形為正方形,且的中點,的中點.

(1)求證:平面;

(2)求證:平面.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了普及環保知識,增強環保意識,某大學從理工類專業的班和文史類專業的班各抽取名同學參加環保知識測試,統計得到成績與專業的列聯表:( )

優秀

非優秀

總計

14

6

20

7

13

20

總計

21

19

40

附:參考公式及數據:

(1)統計量:,().

(2)獨立性檢驗的臨界值表:

0.050

0.010

3.841

6.635

則下列說法正確的是

A. 的把握認為環保知識測試成績與專業有關

B. 的把握認為環保知識測試成績與專業無關

C. 的把握認為環保知識測試成績與專業有關

D. 的把握認為環保知識測試成績與專業無關

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校高三一次月考之后,為了為解數學學科的學習情況,現從中隨機抽出若干名學生此次的數學成績,按成績分組,制成了下面頻率分布表:

組號

分組

頻數

頻率

第一組

5

0.05

第二組

35

0.35

第三組

30

0.30

第四組

20

0.20

第五組

10

0.10

合計

100

1.00

(1)試估計該校高三學生本次月考數學成績的平均分和中位數;

(2)如果把表中的頻率近似地看作每個學生在這次考試中取得相應成績的概率,那么從所有學生中采用逐個抽取的方法任意抽取3名學生的成績,并記成績落在中的學生數為,

求:在三次抽取過程中至少有兩次連續抽中成績在中的概率;

的分布列和數學期望.(注:本小題結果用分數表示)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知實數x,y滿足ax<ay(0<a<1),則下列關系式恒成立的是( )
A.
B.ln(x2+1)>ln(y2+1)
C.sinx>siny
D.x3>y3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校高三年級一次數學考試后,為了解學生的數學學習情況,隨機抽取學生的數學成績,制成表所示的頻率分布.

組號

分組

頻數

頻率

第一組

第二組

第三組

第四

第五組

合計

(1)值;

(2)若從第三、四、五中用分層抽樣方法抽取學生,在這學生中隨機抽取學生與張老師面談,求第三組中至少有學生與張老師面談的概率

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】己知在平面直角坐標系,的參數方程為 (為參數)以軸為極軸, 為極點建立極坐標系,在該極坐標系下,圓是以點為圓心,且過點的圓心.

(1)求圓及圓在平而直角坐標系下的直角坐標方程;

(2)求圓上任一點與圓上任一點之間距離的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】農科院的專家為了了解新培育的甲、乙兩種麥苗的長勢情況,從甲、乙兩種麥苗的試驗田中各抽取6株麥苗測量麥苗的株高,數據如下:(單位:cm)

甲:9,10,11,12,10,20

乙:8,14,13,10,12,21.

(1)在給出的方框內繪出所抽取的甲、乙兩種麥苗株高的莖葉圖;

(2)分別計算所抽取的甲、乙兩種麥苗株高的平均數與方差,并由此判斷甲、乙兩種麥苗的長勢情況.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數滿足,則稱函數為“函數”.

試判斷是否為“函數”,并說明理由;

函數為“函數”,且當時,,求的解析式,并寫出在上的單調遞增區間;

條件下,當時,關于的方程為常數有解,記該方程所有解的和為,求

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视