【題目】設函數f(x)是以4為周期的奇函數,當x∈[﹣1,0)時,f(x)=2x , 則f(log220)= .
【答案】
【解析】解:∵函數f(x)是以4為周期的奇函數,log220∈(4,5),
∴4﹣log220x∈[﹣1,0),
∴f(log220)=f(log220﹣4)=﹣f(4﹣log220),
∵當x∈[﹣1,0)時,f(x)=2x,
∴f(log220)=﹣( )=
=
,
所以答案是: .
【考點精析】本題主要考查了函數奇偶性的性質和函數的值的相關知識點,需要掌握在公共定義域內,偶函數的加減乘除仍為偶函數;奇函數的加減仍為奇函數;奇數個奇函數的乘除認為奇函數;偶數個奇函數的乘除為偶函數;一奇一偶的乘積是奇函數;復合函數的奇偶性:一個為偶就為偶,兩個為奇才為奇;函數值的求法:①配方法(二次或四次);②“判別式法”;③反函數法;④換元法;⑤不等式法;⑥函數的單調性法才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】已知f(x)=
,其中
=(2cosx,﹣
sin2x),
=(cosx,1),x∈R.
(1)求f(x)的單調遞減區間;
(2)在△ABC中,角A,B,C所對的邊分別為a,b,c,f(A)=﹣1,a= ,且向量
=(3,sinB)與
=(2,sinC)共線,求邊長b和c的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=( )x , 函數g(x)=log
x.
(1)若g(ax2+2x+1)的定義域為R,求實數a的取值范圍;
(2)當x∈[( )t+1 , (
)t]時,求函數y=[g(x)]2﹣2g(x)+2的最小值h(t);
(3)是否存在非負實數m,n,使得函數y=log f(x2)的定義域為[m,n],值域為[2m,2n],若存在,求出m,n的值;若不存在,則說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正方體ABCD﹣A1B1C1D1的棱長為2,點P為面ADD1A1的對角線AD1的中點.PM⊥平面ABCD交AD與M,MN⊥BD于N.
(1)求異面直線PN與A1C1所成角的大;(結果可用反三角函數值表示)
(2)求三棱錐P﹣BMN的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= +2x+sinx(x∈R),若函數y=f(x2+2)+f(﹣2x﹣m)只有一個零點,則函數g(x)=mx+
(x>1)的最小值是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=mlnx(m∈R),g(x)=cosx.
(1)若函數 在(1,+∞)上單調遞增,求m的取值范圍;
(2)設函數φ(x)=f(x)+g(x),若對任意的 ,都有φ(x)≥0,求m的取值范圍;
(3)設m>0,點P(x0 , y0)是函數f(x)與g(x)的一個交點,且函數f(x)與g(x)在點P處的切線互相垂直,求證:存在唯一的x0滿足題意,且 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,有一塊半圓形空地,開發商計劃建一個矩形游泳池ABCD及其矩形附屬設施EFGH,并將剩余空地進行綠化,園林局要求綠化面積應最大化.其中半圓的圓心為O,半徑為R,矩形的一邊AB在直徑上,點C,D,G,H在圓周上,E,F在邊CD上,且 ,設∠BOC=θ.
(1)記游泳池及其附屬設施的占地面積為f(θ),求f(θ)的表達式;
(2)怎樣設計才能符合園林局的要求?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設事件A表示“關于x的一元二次方程x2+ax+b2=0有實根”,其中a,b為實常數. (Ⅰ)若a為區間[0,5]上的整數值隨機數,b為區間[0,2]上的整數值隨機數,求事件A發生的概率;
(Ⅱ)若a為區間[0,5]上的均勻隨機數,b為區間[0,2]上的均勻隨機數,求事件A發生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】己知(2x﹣ )5(Ⅰ)求展開式中含
項的系數
(Ⅱ)設(2x﹣ )5的展開式中前三項的二項式系數之和為M,(1+ax)6的展開式中各項系數之和為N,若4M=N,求實數a的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com