【題目】根據下列條件,求直線的方程:
(Ⅰ)過直線l1:2x﹣3y﹣1=0和l2:x+y+2=0的交點,且垂直于直線2x﹣y+7=0;
(Ⅱ)過點(﹣3,1),且在兩坐標軸上的截距之和為﹣4.
科目:高中數學 來源: 題型:
【題目】某學生在一門功課的22次考試中,所得分數莖葉圖如圖所示,則此學生該門功課考試分數的極差與中位數之和為( )
A.117
B.118
C.118.5
D.119.5
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在D上的函數f(x),如果滿足:對任意x∈D,存在常數M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數,其中M稱為函數f(x)的上界. 已知函數f(x)=1+a( )x+(
)x;g(x)=
(Ⅰ)當a=1時,求函數f(x)值域并說明函數f(x)在(﹣∞,0)上是否為有界函數?
(Ⅱ)若函數f(x)在[0,+∞)上是以3為上界的有界函數,求實數a的取值范圍;
(Ⅲ)已知m>﹣1,函數g(x)在[0,1]上的上界是T(m),求T(m)的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點E為棱PC的中點.
(Ⅰ)證明:BE⊥DC;
(Ⅱ)求直線BE與平面PBD所成角的正弦值;
(Ⅲ)若F為棱PC上一點,滿足BF⊥AC,求二面角F﹣AB﹣P的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】學校藝術節對同一類的,
,
,
四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:
甲說:“是或
作品獲得一等獎”;
乙說:“作品獲得一等獎”;
丙說:“,
兩項作品未獲得一等獎”;
丁說:“是作品獲得一等獎”.
若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直.EF∥AC,AB= ,CE=EF=1. (Ⅰ)求證:AF∥平面BDE;
(Ⅱ)求證:CF⊥平面BDE.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 .
(1)證明f(x)在(0,+∞)上單調遞增;
(2)是否存在實數a使得f(x)的定義域、值域都是 ,若存在求出a的值,若不存在說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在正四棱錐中,已知異面直線
與
所成的角為
,給出下面三個命題:
:若
,則此四棱錐的側面積為
;
:若
分別為
的中點,則
平面
;
:若
都在球
的表面上,則球
的表面積是四邊形
面積的
倍.
在下列命題中,為真命題的是( )
A. B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com