精英家教網 > 高中數學 > 題目詳情

已知函數是自然對數的底數,).
(Ⅰ)求的單調區間、最大值;
(Ⅱ)討論關于的方程根的個數。

解法一 (Ⅰ)的單調遞增區間為,單調遞減區間為

(Ⅱ)當時,函數的圖象有兩個交點,即方程有兩個根.
時,函數的圖象有一個交點,即方程有一個根.
顯然當時,方程沒有根.

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知是實數,函數,,分別是的導函數,若在區間上恒成立,則稱在區間上單調性一致.
(Ⅰ)設,若函數在區間上單調性一致,求實數的取值范圍;
(Ⅱ)設,若函數在以為端點的開區間上單調性一致,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

是定義在的可導函數,且不恒為0,記.若對定義域內的每一個,總有,則稱為“階負函數”;若對定義域內的每一個,總有,
則稱為“階不減函數”(為函數的導函數).
(1)若既是“1階負函數”,又是“1階不減函數”,求實數的取值范圍;
(2)對任給的“2階不減函數”,如果存在常數,使得恒成立,試判斷是否為“2階負函數”?并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知處都取得極值.
(Ⅰ) 求,的值;
(Ⅱ)設函數,若對任意的,總存在,使得、,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數),其圖像在點(1,)處的切線方程為.
(1)求,的值;
(2)求函數的單調區間和極值;
(3)求函數在區間[-2,5]上的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)當時,判斷函數是否有極值;
(Ⅱ)若時,總是區間上的增函數,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數,其中為實數.
(1)若上是單調減函數,且上有最小值,求的取值范圍;
(2)若上是單調增函數,試求的零點個數,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(Ⅰ)若曲線在點處與直線相切,求的值.
(Ⅱ)若曲線與直線有兩個不同的交點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數=,
(1)求函數的單調區間
(2)若關于的不等式對一切(其中)都成立,求實數的取值范圍;
(3)是否存在正實數,使?若不存在,說明理由;若存在,求取值的范圍

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视