【題目】已知函數,
.
(Ⅰ)若恒成立,求
的取值范圍;
(Ⅱ)設,
,(
為自然對數的底數).是否存在常數
,使
恒成立,若存在,求出
的取值范圍;若不存在,請說明理由.
【答案】(Ⅰ);(Ⅱ)
.
【解析】試題分析: (Ⅰ)利用函數的導數求出函數的最小值,根據最小值大于 就能 求出
的取值范圍;(Ⅱ)此恒成立問題轉化為
小于等于
的最小值,在求函數
的最小值時,運用了二次求導.
試題解析:(Ⅰ)由已知得,的定義域為
,且
當時,
恒成立,
∴,由
得
,
得的取值范圍為
.
(Ⅱ)由已知得,,其定義域為
.
,
∵,∴
在
上單調遞減,在
上單調遞增,
∴,
令,則
,
再令,則
∵,∴
.
∴在
上單調遞減,∴
∴,且
,
即存在,使
在
上單調遞增,
在
上單調遞減,
則的最小值就是
和
中較小的那個,
又,∴
,
∴恒成立,即
∴存在實數使
恒成立,
取值范圍為
.
點睛:本題考查利用導數研究函數的單調性與最值,對數函數的性質及分類討論思想,利用導數研究函數的單調性時要注意先求函數的定義域,若所求的導數含有參數,在進行討論時要做到分類標準統一,對參數的討論要不重不漏.
科目:高中數學 來源: 題型:
【題目】為了解某校高三學生的視力情況,隨機地抽查了該校1000名高三學生的視力情況,得到頻率分布直方圖,如圖,由于不慎將部分數據丟失,但知道前4組的頻數成等比數列,后6組的頻數成等差數列,設最大頻率為,視力在4.6到5.0之間的學生數
,
的值分別為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了在“十一”黃金周期間降價搞促銷,某超市對顧客實行購物優惠活動,規定一次購物付款總額:(1)如果不超過200元,則不予優惠;(2)如果超過200元,但不超過500元,則按標價給予9折優惠;(3)如果超過500元,其中500元按第(2)條給予優惠,超過500元的部分給予7折優惠。小張兩次去購物,分別付款168元和423元,假設她一次性購買上述同樣的商品,則應付款額為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統一為元,在下一年續保時,實行的是費率浮動機制,保費與上一年度車輛發生道路交通事故的情況相聯系,發生交通事故的次數越多,費率也就是越高,具體浮動情況如下表:
交強險浮動因素和浮動費率比率表 | ||
浮動因素 | 浮動比率 | |
上一個年度未發生有責任道路交通事故 | 下浮10% | |
上兩個年度未發生有責任道路交通事故 | 下浮20% | |
上三個及以上年度未發生有責任道路交通事故 | 下浮30% | |
上一個年度發生一次有責任不涉及死亡的道路交通事故 | 0% | |
上一個年度發生兩次及兩次以上有責任道路交通事故 | 上浮10% | |
上一個年度發生有責任道路交通死亡事故 | 上浮30% |
某機構為了 某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續保時的情況,統計得到了下面的表格:
類型 | ||||||
數量 | 10 | 5 | 5 | 20 | 15 | 5 |
以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(1)按照我國《機動車交通事故責任強制保險條例》汽車交強險價格的規定,,記
為某同學家的一輛該品牌車在第四年續保時的費用,求
的分布列與數學期望;(數學期望值保留到個位數字)
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車,假設購進一輛事故車虧損5000元,一輛非事故車盈利10000元:
①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購進100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為響應市政府“綠色出行”的號召,王老師每個工作日上下班由自駕車改為選擇乘坐地鐵或騎共享單車這兩種方式中的一種出行.根據王老師從2017年3月到2017年5月的出行情況統計可知,王老師每次出行乘坐地鐵的概率是0.4,騎共享單車的概率是0.6.乘坐地鐵單程所需的費用是3元,騎共享單車單程所需的費用是1元.記王老師在一個工作日內上下班所花費的總交通費用為X元,假設王老師上下班選擇出行方式是相互獨立的.
(I)求X的分布列和數學期望;
(II)已知王老師在2017年6月的所有工作日(按22個工作日計)中共花費交通費用110元,請判斷王老師6月份的出行規律是否發生明顯變化,并依據以下原則說明理由.
原則:設表示王老師某月每個工作日出行的平均費用,若
,則有95%的把握認為王老師該月的出行規律與前幾個月的出行規律相比有明顯變化.(注:
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,設△ABC的頂點分別為,圓M是△ABC的外接圓,直線
的方程是
,
(1)求圓M的方程;
(2)證明:直線與圓M相交;
(3)若直線被圓M截得的弦長為3,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本題滿分12分)為了解某校學生暑期參加體育鍛煉的情況,對某班M名學生暑期參加體育鍛煉的次數進行了統計,得到如下的頻率分布表與直方圖:
組別 | 鍛煉次數 | 頻數(人) | 頻率 |
1 | 2 | 0.04 | |
2 | 11 | 0.22 | |
3 | 16 | ||
4 | 15 | 0.30 | |
5 | |||
6 | 2 | 0.04 | |
[ | 合計 | 1.00 |
(1)求頻率分布表中、
、
及頻率分布直方圖中
的值;
(2)求參加鍛煉次數的眾數(直接寫出答案,不要求計算過程);
(3)若參加鍛煉次數不少于18次為及格,估計這次體育鍛煉的及格率。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com