【題目】如圖是正四面體的平面展開圖,G,H,M,N分別為DE,BE,EF,EC的中點,在這個正四面體中,
①GH與EF平行;②BD與MN為異面直線;③GH與MN成60°角;④DE與MN垂直.以上四個命題中,正確命題的序號是 .
【答案】②③④
【解析】解:將正四面體的平面展開圖復原為正四面體A(B、C)﹣DEF,如圖:
對于①,G、H分別為DE、BE的中點,則GH∥AD,而AD與EF異面,故GH與EF不平行,故①錯誤;
對于②,BD與MN為異面直線,正確(假設BD與MN共面,則A、D、E、F四點共面,與ADEF為正四面體矛盾,故假設不成立,故BD與MN異面);
對于③,依題意,GH∥AD,MN∥AF,∠DAF=60°,故GH與MN成60°角,故③正確;
對于④,連接GF,A點在平面DEF的射影A1在GF上,∴DE⊥平面AGF,DE⊥AF,
而AF∥MN,∴DE與MN垂直,故④正確.
綜上所述,正確命題的序號是②③④,
故答案為:②③④.
正四面體的平面展開圖復原為正四面體A(B、C)﹣DEF,①,依題意,GH∥AD,而AD與EF異面,從而可判斷GH與EF不平行;②,假設BD與MN共面,可得A、D、E、F四點共面,導出矛盾,從而可否定假設,肯定BD與MN為異面直線;③,依題意知,GH∥AD,MN∥AF,∠DAF=60°,于是可判斷GH與MN成60°角;④,連接GF,那么A點在平面DEF的射影肯定在GF上,通過線面垂直得到線線垂直.
科目:高中數學 來源: 題型:
【題目】設是一個非空集合,
是定義在
上的一個運算.如果同時滿足下述四個條件:
(1)對于,都有
;
(2)對于,都有
;
(3)對于,使得
;
(4)對于,使得
(注:“
”同(iii)中的“
”).
則稱關于運算
構成一個群.現給出下列集合和運算:
①是整數集合,
為加法;②
是奇數集合,
為乘法;③
是平面向量集合,
為數量積運算;④
是非零復數集合,
為乘法. 其中
關于運算
構成群的序號是___________(將你認為正確的序號都寫上).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在△ABC中,角A,B,C的對邊分別是a,b,c,向量m=(2b,1),n=(2a-c,cos C),且m∥n.(1)若b2=ac,試判斷△ABC的形狀;(2)求y=1-的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列的前n項和為
,
,
,數列
滿足:
,
,
,數列
的前n項和為
(1)求數列的通項公式及前n項和;
(2)求數列的通項公式及前n項和;
(3)記集合,若M的子集個數為16,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com