精英家教網 > 高中數學 > 題目詳情

,.
(Ⅰ)當時,求曲線處的切線的方程;
(Ⅱ)如果存在,使得成立,求滿足上述條件的最大整數;
(Ⅲ)如果對任意的,都有成立,求實數的取值范圍.

(1);(2);(3).

解析試題分析:本題考查導數的運算,利用導數研究函數的單調性、最值等基礎知識,考查函數思想和轉化思想,考查綜合分析和解決問題的能力.第一問,將代入得到解析式,求代入得到切線的斜率,再將代入到中得到切點的縱坐標,利用點斜式求出切線方程;第二問,先將問題轉化為,進一步轉化為求函數的最大值和最小值問題,對求導,通過畫表判斷函數的單調性和極值,求出最值代入即可;第三問,結合第二問的結論,將問題轉化為恒成立,進一步轉化為恒成立,設出新函數,求的最大值,所以即可.
試題解析:(1)當時,,,,,
所以曲線處的切線方程為;         2分
(2)存在,使得成立等價于:,
考察,,












 


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數.
(1)若在區間單調遞增,求的最小值;
(2)若,對,使成立,求的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(Ⅰ)當時,試討論的單調性;
(Ⅱ)設,當時,若對任意,存在,使,求實數取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知二次函數h(x)=ax2+bx+c(其中c<3),其導函數的圖象如圖,f(x)=6lnx+h(x)

(1)求f(x)在x=3處的切線斜率;
(2)若f(x)在區間(m,m+)上是單調函數,求實數m的取值范圍;
(3)若對任意k∈[-1,1],函數y=kx(x∈(0,6])的圖象總在函數y=f(x)圖象的上方,求c的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中.
(Ⅰ)求函數的單調區間;
(Ⅱ)若直線是曲線的切線,求實數的值;
(Ⅲ)設,求在區間上的最小值.(為自然對數的底數)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知x=1是函數的一個極值點,
(Ⅰ)求a的值;
(Ⅱ)當時,證明:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(Ⅰ)當時,恒成立,求實數的取值范圍;
(Ⅱ)若對一切恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,.
(1)當時,求處的切線方程;
(2)若內單調遞增,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數.
(1)求的單調區間及最大值;
(2)恒成立,試求實數的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视