【題目】如圖所示,在直角梯形中,
分別是
的中點,將三角形
沿
折起,下列說法正確的是__________(填上所有正確的序號).
①不論折至何位置(不在平面
內)都有
平面
;
②不論折至何位置都有
;
③不論折至何位置(不在平面
內)都有
.
【答案】①②
【解析】
由已知,在未折疊的原梯形中,AB∥DE,BE∥AD.所以四邊形ABED為平行四邊形,∴DA=EB.折疊后得出圖形如下:
①過M,N分別作AE,BC的平行線,交ED,EC于F,H.連接FH
則,
,
∵AM=BN,∴EN=DM,等量代換后得出HN=FM,
又CB∥EA,∴HN∥FM,
∴四邊形MNHF是平行四邊形。
∴MN∥FH
MN面CED,HF面CED.∴MN∥平面DEC.①正確
②由已知,AE⊥ED,AE⊥EC,
∴AE⊥面CED,HF面CED∴AE⊥HF,∴MN⊥AE;②正確
③MN與AB異面。假若MN∥AB,則MN與AB確定平面MNAB,
從而BE平面MNAB,AD平面MNAB.與BE和AD是異面直線矛盾。③錯誤。
故答案為:①②。
科目:高中數學 來源: 題型:
【題目】一個生產公司投資A生產線500萬元,每萬元可創造利潤萬元,該公司通過引進先進技術,在生產線A投資減少了x萬元,且每萬元的利潤提高了
;若將少用的x萬元全部投入B生產線,每萬元創造的利潤為
萬元,其中
.
若技術改進后A生產線的利潤不低于原來A生產線的利潤,求x的取值范圍;
若生產線B的利潤始終不高于技術改進后生產線A的利潤,求a的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】實驗杯足球賽采用七人制淘汰賽規則,某場比賽中一班與二班在常規時間內戰平,直接進入點球決勝環節,在點球決勝環節中,雙方首先輪流罰點球三輪,罰中更多點球的球隊獲勝;若雙方在三輪罰球中未分勝負,則需要進行一對一的點球決勝,即雙方各派處一名隊員罰點球,直至分出勝負;在前三輪罰球中,若某一時刻勝負已分,尚未出場的隊員無需出場罰球(例如一班在先罰球的情況下,一班前兩輪均命中,二班前兩輪未能命中,則一班、二班的第三位同學無需出場).由于一班同學平時踢球熱情較高,每位隊員罰點球的命中率都能達到0.8,而二班隊員的點球命中串只有0.5,比賽時通過抽簽決定一班在每一輪都先罰球.
(1)定義事件為“一班第三位同學沒能出場罰球”,求事件
發生的概率;
(2)若兩隊在前三輪點球結束后打平,則進入一對一點球決勝,一對一球決勝由沒有在之前點球大戰中出場過的隊員主罰點球,若在一對一點球決勝的某一輪中,某對隊員射入點球且另一隊員未能射入,則比賽結束;若兩名隊員均射入或者均射失點球,則進行下一輪比賽. 若直至雙方場上每名隊員都已經出場罰球,則比賽亦結束,雙方通過抽簽決定勝負,本場比賽中若已知雙方在點球大戰,以隨機變量記錄雙方進行一對一點球決勝的輪數,求
的分布列與數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年8月8日是我國第十個全民健身日,其主題是:新時代全民健身動起來.某市為了解全民健身情況,隨機從某小區居民中抽取了40人,將他們的年齡分成7段:,
,
,
,
,
,
后得到年齡如圖所示的頻率分布直方圖.
(1)試求這40人年齡的眾數、中位數的估計值;
(2)(i)若從樣本中年齡在的居民中任取2人贈送健身卡,求這2人中至少有1人年齡低于60歲的概率;
(ii)己知該小區年齡在內的總人數為1200,若18歲以上(含18歲)為成年人,試估計該小區年齡不超過80歲的成年人人數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,直線
經過點
,傾斜角為
.以坐標原點
為極點,以
軸的正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
.
(1)寫出直線的參數方程和曲線
的直角坐標方程;
(2)設直線與曲線
相交于
,
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校為了解學生對食堂用餐的滿意度,從全校在食堂用餐的3000名學生中,隨機抽取100名學生對食堂用餐的滿意度進行評分.根據學生對食堂用餐滿意度的評分,得到如圖所示的率分布直方圖,
(1)求頻率分布直方圖中的值
(2)規定:學生對食堂用餐滿意度的評分不低于80分為“滿意”,試估計該校在食堂用餐的3000名學生中“滿意”的人數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com