【題目】已知橢圓:
,其離心率為
,以原點為圓心,橢圓的短軸長為直徑的圓被直線
截得的弦長等于
.
(1)求橢圓的方程;
(2)設為橢圓
的左頂點,過點
的直線
與橢圓的另一個交點為
,與
軸相交于點
,過原點與
平行的直線與橢圓相交于
兩點,問是否存在常數
,使
恒成立?若存在,求出
;若不存在,請說明理由.
科目:高中數學 來源: 題型:
【題目】已知幾何體,其中四邊形
為直角梯形,四邊形
為矩形,
,且
,
.
(1)試判斷線段上是否存在一點
,使得
平面
,請說明理由;
(2)若,求該幾何體的表面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓方程為,射線
與橢圓的交點為M,過M作傾斜角互補的兩條直線,分別與橢圓交于A,B兩點(異于M).
(1)求證:直線AB的斜率為定值;
(2)求面積的最大值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解高一學生暑假里在家讀書情況,特隨機調查了50名男生和50名女生平均每天的閱讀時間(單位:分鐘),統計如下表:
(1)根據統計表判斷男生和女生誰的平均讀書時間更長?并說明理由;
(2)求100名學生每天讀書時間的平均數,并將每天平均時間超過和不超過平均數的人數填入下列的列聯表:
(3)根據(2)中列聯表,能否有99%的把握認為“平均閱讀時間超過或不超過平均數是否與性別有關?”
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲廠以千克/小時的速度勻速生產某種產品(生產條件要求
),每小時可獲得利潤是
元.
(1)要使生產該產品小時獲得的利潤不低于
元,求
的取值范圍;
(2)要使生產千克該產品獲得的利潤最大,問:甲廠應該選取何種生產速度?并求此最大利潤.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某運動員每次射擊命中不低于8環的概率為,命中8環以下的概率為
,現用隨機模擬的方法估計該運動員三次射擊中有兩次命中不低于8環,一次命中8環以下的概率:先由計算器產生0到9之間取整數值的隨機數,指定0、1、2、3、4、5表示命中不低于8環,6、7、8、9表示命中8環以下,再以每三個隨機數為一組,代表三次射擊的結果,產生了如下20組隨機數:
據此估計,該運動員三次射擊中有兩次命中不低于8環,一次命中8環以下的概率為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓經過橢圓
:
的兩個焦點和兩個頂點,點
,
,
是橢圓
上的兩點,它們在
軸兩側,且
的平分線在
軸上,
.
(Ⅰ)求橢圓的方程;
(Ⅱ)證明:直線過定點.
【答案】(Ⅰ).(Ⅱ)直線
過定點
.
【解析】【試題分析】(I)根據圓的半徑和已知 ,故
,由此求得橢圓方程.(II)設出直線
的方程,聯立直線方程與橢圓方程,寫出韋達定理,寫出
的斜率并相加,由此求得直線
過定點
.
【試題解析】
(Ⅰ)圓與
軸交點
即為橢圓的焦點,圓
與
軸交點
即為橢圓的上下兩頂點,所以
,
.從而
,
因此橢圓的方程為:
.
(Ⅱ)設直線的方程為
.
由,消去
得
.
設,
,則
,
.
直線的斜率
;
直線的斜率
.
.
由的平分線在
軸上,得
.又因為
,所以
,
所以.
因此,直線過定點
.
[點睛]本小題主要考查橢圓方程的求解,考查圓與橢圓的位置關系,考查直線與圓錐曲線位置關系. 涉及直線與橢圓的基本題型有:(1)位置關系的判斷.(2)弦長、弦中點問題.(3)軌跡問題.(4)定值、最值及參數范圍問題.(5)存在性問題.常用思想方法和技巧有:(1)設而不求.(2)坐標法.(3)根與系數關系.
【題型】解答題
【結束】
21
【題目】已知函數(
,且
).
(Ⅰ)求函數的單調區間;
(Ⅱ)求函數在
上的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數對任意的
都有
,且
.
(1)求函數的解析式;
(2)設函數.
①若存在實數,
,使得
在區間
上為單調函數,且
取值范圍也為
,求
的取值范圍;
②若函數的零點都是函數
的零點,求
的所有零點.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com