【題目】已知a∈R,函數f(x)=|x+ ﹣a|+a在區間[1,4]上的最大值是5,則a的取值范圍是 .
【答案】(﹣∞, )
【解析】解:由題可知|x+ ﹣a|+a≤5,即|x+
﹣a|≤5﹣a,所以a≤5,
又因為|x+ ﹣a|≤5﹣a,
所以a﹣5≤x+ ﹣a≤5﹣a,
所以2a﹣5≤x+ ≤5,
又因為1≤x≤4,4≤x+ ≤5,
所以2a﹣5≤4,解得a≤ ,
所以答案是:(﹣∞, ).
【考點精析】本題主要考查了函數的最值及其幾何意義和絕對值不等式的解法的相關知識點,需要掌握利用二次函數的性質(配方法)求函數的最大(。┲;利用圖象求函數的最大(小)值;利用函數單調性的判斷函數的最大(小)值;含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規律:關鍵是去掉絕對值的符號才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=excosx﹣x.(13分)
(1)求曲線y=f(x)在點(0,f(0))處的切線方程;
(2)求函數f(x)在區間[0, ]上的最大值和最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知在直角坐標系中,直線
的參數方程為
,(
為參數),以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求直線的普通方程和曲線
的直角坐標方程;
(2)設點是曲線
上的一個動點,求它到直線
的距離
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某研究型學習小組調查研究高中生使用智能手機對學習的影響,部分統計數據如下:
使用智能手機 | 不使用智能手機 | 合計 | |
學習成績優秀 | |||
學習成績不優秀 | |||
合計 |
(1)根據以上統計數據,你是否有的把握認為使用智能手機對學習有影響?
(2)為進一步了解學生對智能手機的使用習慣,現從全校使用智能手機的高中生中(人數很多)隨機抽取 人,求抽取的學生中學習成績優秀的與不優秀的都有的概率.
附:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知y=f(x)是定義在R上的偶函數,當x0時,f(x)=
.
(1)求當x<0時,f(x)的解析式;
(2)作出函數f(x)的圖象,并指出其單調區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】雙曲線E: =1(a>0,b>0)的左、右焦點分別為F1、F2 , P是E坐支上一點,且|PF1|=|F1F2|,直線PF2與圓x2+y2=a2相切,則E的離心率為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com