【題目】函數f(x)=Asin(ωx+φ)(ω>0, )的部分圖象如圖所示,將函數f(x)的圖象向右平移
個單位后得到函數g(x)的圖象,若函數g(x)在區間
(
)上的值域為[﹣1,2],則θ= .
【答案】
【解析】解:根據函數f(x)=Asin(ωx+φ)(ω>0, )的部分圖象,
可得A=﹣2, =
=
,∴ω=2.
再根據五點法作圖可得2 +φ=π,∴φ=
,f(x)=﹣2sin(2x+
).
將函數f(x)的圖象向右平移 個單位后得到函數g(x)=﹣2sin(2x﹣
+
)=﹣2sin(2x﹣
)的圖象,
對于函數y=g(x),當x∈ (
),2x﹣
∈[﹣π,2θ﹣
],
由于g(x)的值域為[﹣1,2],故﹣2sin(2x﹣ )的最小值為﹣1,此時,2sin(2θ﹣
)=
,
則θ= ,
所以答案是: .
【考點精析】根據題目的已知條件,利用函數y=Asin(ωx+φ)的圖象變換的相關知識可以得到問題的答案,需要掌握圖象上所有點向左(右)平移個單位長度,得到函數
的圖象;再將函數
的圖象上所有點的橫坐標伸長(縮短)到原來的
倍(縱坐標不變),得到函數
的圖象;再將函數
的圖象上所有點的縱坐標伸長(縮短)到原來的
倍(橫坐標不變),得到函數
的圖象.
科目:高中數學 來源: 題型:
【題目】在四棱錐P﹣ABCD中,DA⊥平面PAB,DC∥AB,DA=DC=2,AB=AP=4,∠PAB=120°,M為PB中點.
(Ⅰ)求證:CM∥平面PAD;
(Ⅱ)求二面角M﹣AC﹣B的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓 的中心在原點,離心率為
,右焦點到直線
的距離為2.
(1)求橢圓 的方程;
(2)橢圓下頂點為 ,直線
(
)與橢圓相交于不同的兩點
,當
時,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=sin(ωx+φ)(其中|φ|< )的圖象如圖所示,為了得到y=sinωx的圖象,只需把y=f(x)的圖象上所有點( )
A.向左平移 個單位長度
B.向右平移 個單位長度
C.向左平移 個單位長度
D.向右平移 個單位長度
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=e2x , g(x)=kx+1(k∈R). (Ⅰ)若直線y=g(x)和函數y=f(x)的圖象相切,求k的值;
(Ⅱ)當k>0時,若存在正實數m,使對任意x∈(0,m),都有|f(x)﹣g(x)|>2x恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在等差數列{an}中,a2+a7=﹣23,a3+a8=﹣29
(1)求數列{an}的通項公式;
(2)設數列{an+bn}是首項為1,公比為2的等比數列,求{bn}的前n項和Sn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,斜三棱柱ABC﹣A1B1C1中,側面AA1B1B為菱形,底面△ABC是等腰直角三角形,∠BAC=90°,A1B⊥B1C.
(1)求證:直線AC⊥直線BB1;
(2)若直線BB1與底面ABC成的角為60°,求二面角A﹣BB1﹣C的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A、B、C所對的邊分別為a,b,c,滿足(2a﹣c)cosB=bcosC.
(1)求B的大。
(2)如圖,AB=AC,在直線AC的右側取點D,使得AD=2CD=4.當角D為何值時,四邊形ABCD面積最大.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com