【題目】在直角坐標系xOy中,曲線C的方程為.在以原點O為極點,x軸正半軸為極軸的極坐標系中,P的極坐標為
,直線l過點P.
(1)若直線l與OP垂直,求直線l的直角標方程:
(2)若直線l與曲線C交于A,B兩點,且,求直線l的傾斜角.
科目:高中數學 來源: 題型:
【題目】中心在原點的橢圓E的一個焦點與拋物線的焦點關于直線
對稱,且橢圓E與坐標軸的一個交點坐標為
.
(1)求橢圓E的標準方程;
(2)過點的直線l(直線的斜率k存在且不為0)交E于A,B兩點,交x軸于點P點A關于x軸的對稱點為D,直線BD交x軸于點Q.試探究
是否為定值?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】直角坐標系中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C的極坐標方程為:
,傾斜角為銳角的直線l過點
與單位圓
相切.
(1)求曲線C的直角坐標方程和直線l的參數方程;
(2)設直線l與曲線C交于A,B兩點,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在正三棱錐P﹣ABC中,PA,PB,PC兩兩垂直,,點E在線段AB上,且AE=2EB,過點E作該正三棱錐外接球的截面,則所得截面圓面積的最小值是( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某生物興趣小組對冬季晝夜溫差與反季節新品種大豆發芽數之間的關系進行研究,他們分別記錄了月
日至11月25日每天的晝夜溫差與實驗室每天100顆種子的發芽數,得到以下表格
日期 | 11月21日 | 11月22日 | 11月23日 | 11月24日 | 11月25日 |
溫差( | 8 | 9 | 11 | 10 | 7 |
發芽數(顆) | 22 | 26 | 31 | 27 | 19 |
該興趣小組確定的研究方案是:先從這5組數據中選取2組數據,然后用剩下的3組數據求線性回歸方程,再用被選取的組數據進行檢驗.
(1)求統計數據中發芽數的平均數與方差;
(2)若選取的是11月21日與11月25日的兩組數據,請根據11月22 日至11月24 日的數據,求出發芽數關于溫差
的線性回歸方程
,若由線性回歸方程得到的估計數據與所選取的檢驗數據的誤差不超過2,則認為得到的線性回歸方程是可靠的,問得到的線性回歸方程是否可靠?
附:線性回歸方程 中斜率和截距最小二乘估法計算公式: ,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,將曲線
:
上的點按坐標變換
,得到曲線
,
為
與
軸負半軸的交點,經過點
且傾斜角為
的直線
與曲線
的另一個交點為
,與曲線
的交點分別為
,
(點
在第二象限).
(Ⅰ)寫出曲線的普通方程及直線
的參數方程;
(Ⅱ)求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知在棱長為1的正方體中,
,
,
分別是線段
,
,
的中點,又
,
分別在線段
,
上,且
.設平面
平面
,現有下列結論:
①平面
;
②;
③直線與平面
不垂直;
④當變化時,
不是定直線.
其中不成立的結論是______.(填序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓的焦距是
,長軸長是短軸長3倍,任作斜率為
的直線
與橢圓
交于
兩點(如圖所示),且點
在直線
的左上方.
(1)求橢圓的方程;
(2)若,求
的面積;
(3)證明:的內切圓的圓心在一條定直線上。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com