【題目】中心在原點的橢圓E的一個焦點與拋物線的焦點關于直線
對稱,且橢圓E與坐標軸的一個交點坐標為
.
(1)求橢圓E的標準方程;
(2)過點的直線l(直線的斜率k存在且不為0)交E于A,B兩點,交x軸于點P點A關于x軸的對稱點為D,直線BD交x軸于點Q.試探究
是否為定值?請說明理由.
科目:高中數學 來源: 題型:
【題目】平面內與兩定點,
連線的斜率之積等于
的點的軌跡,加上
、
兩點所成的曲線為
.若曲線
與
軸的正半軸的交點為
,且曲線
上的相異兩點
、
滿足
.
(1)求曲線的軌跡方程;
(2)求面積
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)求函數的圖象在
(
為自然對數的底數)處的切線方程;
(2)若對任意的,均有
,則稱
為
在區間
上的下界函數,
為
在區間
上的上界函數.
①若,求證:
為
在
上的上界函數;
②若,
為
在
上的下界函數,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,且以橢圓上的點和長軸兩端點為頂點的三角形的面積的最大值為
.
(1)求橢圓的方程;
(2)經過定點的直線
交橢圓
于不同的兩點
、
,點
關于
軸的對稱點為
,試證明:直線
與
軸的交點
為一個定點,且
(
為原點).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】關于圓周率,數學發展史上出現過許多很有創意的求法,如著名的蒲豐實驗和查理斯實驗,受其啟發,我們也可以通過設計下面的實驗來估計
的值:先請240名同學,每人隨機寫下兩個都小于1的正實數x,y組成的實數對
,再統計兩數能與1構成鈍角三角形三邊的數對
的個數m;最后再根據計數m來估計π的值.假設統計結果是
,那么可以估計
的近似值為____________.(用分數表示)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,滿足
,則( )
A.函數有2個極小值點和1個極大值點
B.函數有2個極大值點和1個極小值點
C.函數有可能只有一個零點
D.有且只有一個實數,使得函數
有兩個零點
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知拋物線E:(
)與圓O:
相交于A,B兩點,且
.過劣弧
上的動點
作圓O的切線交拋物線E于C,D兩點,分別以C,D為切點作拋物線E的切線
,
,相交于點M.
(1)求拋物線E的方程;
(2)求點M到直線距離的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C的方程為.在以原點O為極點,x軸正半軸為極軸的極坐標系中,P的極坐標為
,直線l過點P.
(1)若直線l與OP垂直,求直線l的直角標方程:
(2)若直線l與曲線C交于A,B兩點,且,求直線l的傾斜角.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com