【題目】設f(x)=2sin(180°﹣x)+cos(﹣x)﹣sin(450°﹣x)+cos(90°+x).
(1)若f(α)= α∈(0°,180°),求tanα;
(2)若f(α)=2sinα﹣cosα+ ,求sinαcosα的值.
【答案】
(1)解:∵f(x)=2sin(180°﹣x)+cos(﹣x)﹣sin(450°﹣x)+cos(90°+x)
=2sinx+cosx﹣cosx﹣sinx=sinx,
f(α)= ,α∈(0°,180°),
∴f(α)=sinα= ,∴cosα=±
=±
,
∴tanα= =
.
(2)解:∵f(α)=2sinα﹣cosα+ =sinα,
∴sinα﹣cosα=﹣ ,
∴(sinα﹣cosα)2=1﹣2sinαcosα= ,
解得sinαcosα= .
【解析】(1)推導出f(x)=sinx,從而f(α)=sinα= ,由此能求出tanα.(2)推導出sinα﹣cosα=﹣
,由此能求出sinαcosα.
科目:高中數學 來源: 題型:
【題目】已知圓M的圓心在直線x﹣2y+4=0上,且與x軸交于兩點A(﹣5,0),B(1,0). (Ⅰ)求圓M的方程;
(Ⅱ)求過點C(1,2)的圓M的切線方程;
(Ⅲ)已知D(﹣3,4),點P在圓M上運動,求以AD,AP為一組鄰邊的平行四邊形的另一個頂點Q軌跡方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商場舉行有獎促銷活動,顧客購買一定金額的商品后即可參加抽獎,抽獎有兩種方案可供選擇. 方案一:從裝有4個紅球和2個白球的不透明箱中,隨機摸出2個球,若摸出的2個球都是紅球則中獎,否則不中獎;
方案二:擲2顆骰子,如果出現的點數至少有一個為4則中獎,否則不中獎.(注:骰子(或球)的大小、形狀、質地均相同)
(Ⅰ)有顧客認為,在方案一種,箱子中的紅球個數比白球個數多,所以中獎的概率大于 .你認為正確嗎?請說明理由;
(Ⅱ)如果是你參加抽獎,你會選擇哪種方案?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線E的中心為原點,P(3,0)是E的焦點,過P的直線l與E相交于A,B兩點,且AB的中點為N(﹣12,﹣15),則E的方程式為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐P﹣ABCD中,底面ABCD是邊長為2的菱形,∠BAD=60°,PD⊥底面ABCD,點M、N分別是棱AB、CD的中點.
(1)證明:BN⊥平面PCD;
(2)在線段PC上是否存在點H,使得MH與平面PCD所成最大角的正切值為 ,若存在,請求出H點的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】據環保部通報,2016年10月24日起,京津冀周邊霧霾又起,為此,環保部及時提出防控建議,推動應對工作由過去“大水漫灌式”的減排方式轉變為實現精確打擊.某燃煤企業為提高應急聯動的同步性,新購置并安裝了先進的廢氣處理設備,使產生的廢氣經過過濾后排放,以降低對大氣環境的污染,已知過濾后廢氣的污染物數量N(單位:mg/L)與過濾時間t(單位:小時)間的關系為N(t)=N0e﹣λt(N0 , λ均為非零常數,e為自然對數的底數)其中N0為t=0時的污染物數量,若經過5小時過濾后污染物數量為 N0 .
(1)求常數λ的值;
(2)試計算污染物減少到最初的10%至少需要多少時間?(精確到1小時) 參考數據:ln3≈1.10,ln5≈1.61,ln10≈2.30.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將函數y=sin(x﹣ )的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再將所得的圖象向左平移
個單位,得到的圖象對應的解析式是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐P﹣ABCD中,底面ABCD是正方形,側棱PD⊥底面ABCD,PD=DC,點E是PC的中點,作EF⊥PB交PB于點F.
(1)求證PA∥平面EDB;
(2)求二面角C﹣PB﹣D的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了得到函數 的圖象,只需將函數y=sin2x的圖象上每一點( )
A.向左平移 個單位長度
B.向左平移 個單位長度
C.向右平移 個單位長度
D.向右平移 個單位長度
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com