【題目】為了得到函數 的圖象,只需將函數y=sin2x的圖象上每一點( )
A.向左平移 個單位長度
B.向左平移 個單位長度
C.向右平移 個單位長度
D.向右平移 個單位長度
科目:高中數學 來源: 題型:
【題目】設f(x)=2sin(180°﹣x)+cos(﹣x)﹣sin(450°﹣x)+cos(90°+x).
(1)若f(α)= α∈(0°,180°),求tanα;
(2)若f(α)=2sinα﹣cosα+ ,求sinαcosα的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在五面體ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M為EC的中點,AF=AB=BC=FE= AD.
(1)求異面直線BF與DE所成的角的大小;
(2)證明平面AMD⊥平面CDE;
(3)求銳二面角A﹣CD﹣E的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax2+bx+c(a≠0)滿足f(0)=0,對于任意x∈R都有f(x)≥x,且f(﹣ +x)=f(﹣
﹣x),令g(x)=f(x)﹣|λx﹣1|(λ>0).
(1)求函數f(x)的表達式;
(2)函數g(x)在區間(0,1)上有兩個零點,求λ的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 ,對于
上的任意x1 , x2 , 有如下條件:
① ;②|x1|>x2;③x1>|x2|;④
.
其中能使g(x1)>g(x2)恒成立的條件序號是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a,b為常數,且a≠0,f(x)=ax2+bx,f(2)=0.
(Ⅰ)若方程f(x)﹣x=0有唯一實數根,求函數f(x)的解析式;
(Ⅱ)當a=1時,求函數f(x)在區間[﹣1,2]上的最大值與最小值;
(Ⅲ)當x≥2時,不等式f(x)≥2﹣a恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題P:不等式a2﹣4a+3<0的解集;命題Q:使(a﹣2)x2+2(a﹣2)x﹣4<0對任意實數x恒成立的實數a,若P∨Q是真命題,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com