【題目】已知函數 ,對于
上的任意x1 , x2 , 有如下條件:
① ;②|x1|>x2;③x1>|x2|;④
.
其中能使g(x1)>g(x2)恒成立的條件序號是 .
科目:高中數學 來源: 題型:
【題目】據環保部通報,2016年10月24日起,京津冀周邊霧霾又起,為此,環保部及時提出防控建議,推動應對工作由過去“大水漫灌式”的減排方式轉變為實現精確打擊.某燃煤企業為提高應急聯動的同步性,新購置并安裝了先進的廢氣處理設備,使產生的廢氣經過過濾后排放,以降低對大氣環境的污染,已知過濾后廢氣的污染物數量N(單位:mg/L)與過濾時間t(單位:小時)間的關系為N(t)=N0e﹣λt(N0 , λ均為非零常數,e為自然對數的底數)其中N0為t=0時的污染物數量,若經過5小時過濾后污染物數量為 N0 .
(1)求常數λ的值;
(2)試計算污染物減少到最初的10%至少需要多少時間?(精確到1小時) 參考數據:ln3≈1.10,ln5≈1.61,ln10≈2.30.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數f(x)=x2﹣ 在其定義域內的一個子區間(k﹣1,k+1)內不是單調函數,則實數k的取值范圍( )
A.[1,+∞)
B.[1, )
C.[1,+2)
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義:f1(x)=f(x),當n≥2且x∈N*時,fn(x)=f(fn﹣1(x)),對于函數f(x)定義域內的x0 , 若正在正整數n是使得fn(x0)=x0成立的最小正整數,則稱n是點x0的最小正周期,x0稱為f(x)的n~周期點,已知定義在[0,1]上的函數f(x)的圖象如圖,對于函數f(x),下列說法正確的是(寫出所有正確命題的編號)
①1是f(x)的一個3~周期點;
②3是點 的最小正周期;
③對于任意正整數n,都有fn( )=
;
④若x0∈( ,1],則x0是f(x)的一個2~周期點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了得到函數 的圖象,只需將函數y=sin2x的圖象上每一點( )
A.向左平移 個單位長度
B.向左平移 個單位長度
C.向右平移 個單位長度
D.向右平移 個單位長度
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如果定義在R上的函數f(x),對任意的x∈R,都有f(﹣x)≠﹣f(x),則稱該函數是“β函數”.
(Ⅰ) 分別判斷下列函數:①y=2x;②y=2x+1; ③y=x2﹣2x﹣3,是否為“β函數”?(直接寫出結論)
(Ⅱ) 若函數f(x)=sinx+cosx+a是“β函數”,求實數a的取值范圍;
(Ⅲ) 已知f(x)= 是“β函數”,且在R上單調遞增,求所有可能的集合A與B.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四棱錐P﹣ABCD的底面是菱形,PA⊥面ABCD,PA=AD=2,∠ABC=60°,E為PD中點.
(1)求證:PB∥平面ACE;
(2)求二面角E﹣AC﹣D的正切值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題p:a∈R,且a>0,a+ ≥2,命題q:x0∈R,sinx0+cosx0=
,則下列判斷正確的是( )
A.p是假命題
B.q是真命題
C.(¬q)是真命題
D.(¬p)∧q是真命題
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了得到函數y=cos(x+ )的圖象,只需把余弦曲線y=cosx上的所有的點( )
A.向左平移 個單位長度
B.向右平移 個單位長度
C.向左平移 個單位長度
D.向右平移 個單位長度
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com